上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (10): 1355-1366.doi: 10.16183/j.cnki.jsjtu.2022.248
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2022-07-01
修回日期:
2022-08-21
接受日期:
2022-09-08
出版日期:
2023-10-28
发布日期:
2023-10-31
通讯作者:
王文
E-mail:wenwang@sjtu.edu.cn
作者简介:
辛鹏飞(1997-),硕士生,从事微通道两相流系统稳定性研究.
基金资助:
XIN Pengfei1, MIAO Jianyin2, KUANG Yiwu1, ZHANG Hongxing2, WANG Wen1()
Received:
2022-07-01
Revised:
2022-08-21
Accepted:
2022-09-08
Online:
2023-10-28
Published:
2023-10-31
Contact:
WANG Wen
E-mail:wenwang@sjtu.edu.cn
摘要:
随着电子器件泵驱冷却要求的不断提高,针对多个分散单元的冷却需求不可避免,从而对作为热沉的并联微通道蒸发器散热均衡性有了更高的需求.但并联热沉由于流动特征曲线中负斜率区域的存在,会产生流量漂移的问题.对氨为工质的双并联热沉系统中的流量分配进行模拟分析,研究了进口过冷度、加热功率、进出口连接管道长度对单个蒸发器流动特征曲线的影响.同时探究了流量漂移对蒸发器整体温度分布的影响,以及加热功率、进口过冷度和进出口连接管道长度对并联热沉流量分配的影响规律.结果表明,一定范围内的蒸发器间流量漂移对冷却系统的换热能力影响有限;加热功率、进口温度、进出口连接管道的布置对并联热沉系统稳定性有着比较大的影响.
中图分类号:
辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366.
XIN Pengfei, MIAO Jianyin, KUANG Yiwu, ZHANG Hongxing, WANG Wen. Flow Distribution Characteristics in Microchannel Heat Sinks in Pumping Liquid Cooling System[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1355-1366.
[1] |
NAQIUDDIN N H, SAW L H, YEW M C, et al. Overview of micro-channel design for high heat flux application[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 901-914.
doi: 10.1016/j.rser.2017.09.110 URL |
[2] |
EBADIAN M A, LIN C X. A review of high-heat-flux heat removal technologies[J]. Journal of Heat Transfer, 2011, 133(11): 110801.
doi: 10.1115/1.4004340 URL |
[3] |
GAO J, HU Z, YANG Q, et al. Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress[J]. Thermal Science and Engineering Progress, 2022, 29: 101203.
doi: 10.1016/j.tsep.2022.101203 URL |
[4] |
PRAJAPATI Y K, BHANDARI P. Flow boiling instabilities in microchannels and their promising solutions—A review[J]. Experimental Thermal and Fluid Science, 2017, 88: 576-593.
doi: 10.1016/j.expthermflusci.2017.07.014 URL |
[5] |
O’NEILL L E, MUDAWAR I. Review of two-phase flow instabilities in macro-and micro-channel systems[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119738.
doi: 10.1016/j.ijheatmasstransfer.2020.119738 URL |
[6] |
AKAGAWA K, KONO M, SAKAGUCHI T, et al. Study on distribution of flow rates and flow stabilities in parallel long evaporators[J]. Bulletin of JSME, 1971, 14(74): 837-848.
doi: 10.1299/jsme1958.14.837 URL |
[7] |
MINZER U, BARNEA D, TAITEL Y. Evaporation in parallel pipes—Splitting characteristics[J]. International Journal of Multiphase Flow, 2004, 30(7/8): 763-777.
doi: 10.1016/j.ijmultiphaseflow.2004.04.006 URL |
[8] |
MINZER U, BARNEA D, TAITEL Y. Flow rate distribution in evaporating parallel pipes—Modeling and experimental[J]. Chemical Engineering Science, 2006, 61(22): 7249-7259.
doi: 10.1016/j.ces.2006.08.026 URL |
[9] | 张炳雷, 徐进良, 肖泽军. 低高宽比微通道中的流动沸腾不稳定性[J]. 化工学报, 2007(7): 1632-1640. |
ZHANG Binglei, XU Jinliang, XIAO Zejun. Flow boiling instability in microchannel with low aspect ratio[J]. Journal of Chemical Industry and Engineering, 2007(7): 1632-1640. | |
[10] |
VAN OEVELEN T, WEIBEL J A, GARIMELLA S V. Predicting two-phase flow distribution and stability in systems with many parallel heated channels[J]. International Journal of Heat and Mass Transfer, 2017, 107: 557-571.
doi: 10.1016/j.ijheatmasstransfer.2016.11.050 URL |
[11] |
VAN OEVELEN T, WEIBEL J A, GARIMELLA S V. The effect of lateral thermal coupling between parallel microchannels on two-phase flow distribution[J]. International Journal of Heat and Mass Transfer, 2018, 124: 769-781.
doi: 10.1016/j.ijheatmasstransfer.2018.03.073 URL |
[12] | 杨瑞昌, 刘京宫, 刘若雷, 等. 自然循环蒸汽发生器倒U型管内倒流特性研究[J]. 工程热物理学报, 2008 (5): 807-810. |
YANG Ruichang, LIU Jingong, LIU Ruolei, et al. Analysis of reverse flow behavior in inverted U-tubes of steam generator during natural circulation[J]. Journal of Engineering Thermophysics, 2008 (5): 807-810. | |
[13] |
郝建立, 陈文振, 王少明. 自然循环蒸汽发生器倒U型管内倒流现象影响因素研究[J]. 原子能科学技术, 2013, 47(1): 65-69.
doi: 10.7538/yzk.2013.47.01.0065 |
HAO Jianli, CHEN Wenzhen, WANG Shaoming. Investigation on factors affecting reverse flow in inverted U-tubes of steam generator under natural circulation[J]. Atomic Energy Science and Technology, 2013, 47(1): 65-69.
doi: 10.7538/yzk.2013.47.01.0065 |
|
[14] | 彭传新, 昝元锋, 袁德文, 等. 并联通道流量漂移流动不稳定性研究[J]. 核动力工程, 2021, 42(Sup.1): 17-20. |
PENG Chuanxin, ZAN Yuanfeng, YUAN Dewen, et al. Research on hydrodynamic drift instability of parallel channels[J]. Nuclear Power Engineering, 2021, 42(Sup.1): 17-20. | |
[15] |
BAIKIN M, TAITEL Y, BARNEA D. Flow rate distribution in parallel heated pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(19/20): 4448-4457.
doi: 10.1016/j.ijheatmasstransfer.2011.04.034 URL |
[16] |
YANG K, ZHANG A, WANG J. On the Ledinegg instability in parallel channels: A new and exact criterion[J]. International Journal of Thermal Sciences, 2018, 129: 193-200.
doi: 10.1016/j.ijthermalsci.2018.01.032 URL |
[17] |
QU W, MUDAWAR I. Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2045-2059.
doi: 10.1016/j.ijheatmasstransfer.2003.12.006 URL |
[18] | CHISHOLM D. Two-phase flow in pipelines and heat exchangers[M]. London: Longmen Group Ltd., 1983: 48-57. |
[19] |
LIU N, XIAO H, LI J. Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels[J]. Applied Thermal Engineering, 2016, 102: 63-72.
doi: 10.1016/j.applthermaleng.2016.03.073 URL |
[20] |
QU W, MUDAWAR I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2737-2753.
doi: 10.1016/S0017-9310(03)00044-9 URL |
[21] |
BERTSCH S S, GROLL E A, GARIMELLA S V. A composite heat transfer correlation for saturated flow boiling in small channels[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2110-2118.
doi: 10.1016/j.ijheatmasstransfer.2008.10.022 URL |
[22] | 陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001: 135-193. |
TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001: 135-193. | |
[23] |
AYUB Z. Current and future prospects of enhanced heat transfer in ammonia systems[J]. International Journal of Refrigeration, 2008, 31(4): 652-657.
doi: 10.1016/j.ijrefrig.2007.11.012 URL |
[24] |
PALM B. Ammonia in low capacity refrigeration and heat pump systems[J]. International Journal of Refrigeration, 2008, 31(4): 709-715.
doi: 10.1016/j.ijrefrig.2007.12.006 URL |
[25] |
HUANG Y, YANG Q, ZHAO J, et al. Experimental study on flow boiling heat transfer characteristics of ammonia in microchannels[J]. Microgravity Science and Technology, 2020, 32(3): 477-492.
doi: 10.1007/s12217-020-09786-z |
[26] |
BAI L, YANG Z, SHEN X, et al. Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator[J]. Heat and Mass Transfer, 2022, 58(5): 813-831.
doi: 10.1007/s00231-021-03139-1 |
[27] | 刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001: 8-18. |
LIU Yanzhu, CHEN Liqun. Nonlinear vibration[M]. Beijing: Higher Education Press, 2001: 8-18. | |
[28] |
MIGLANI A, WEIBEL J A, GARIMELLA S V. Measurement of flow maldistribution induced by the Ledinegg instability during boiling in thermally isolated parallel microchannels[J]. International Journal of Multiphase Flow, 2021, 139: 103644.
doi: 10.1016/j.ijmultiphaseflow.2021.103644 URL |
[29] |
KUO C J, PELES Y. Pressure effects on flow boiling instabilities in parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 271-280.
doi: 10.1016/j.ijheatmasstransfer.2008.06.015 URL |
[30] |
KUANG Y, WANG W, MIAO J, et al. Theoretical analysis and modeling of flow instability in a mini-channel evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 104: 149-162.
doi: 10.1016/j.ijheatmasstransfer.2016.08.042 URL |
[31] |
RITCHEY S N, WEIBEL J A, GARIMELLA S V. Local measurement of flow boiling heat transfer in an array of non-uniformly heated microchannels[J]. International Journal of Heat and Mass Transfer, 2014, 71: 206-216.
doi: 10.1016/j.ijheatmasstransfer.2013.12.012 URL |
[32] |
SHANTIA A, STREICHER W, BALES C. Effect of tapered headers on pressure drop and flow distribution in a Z-type polymeric solar absorber[J]. Solar Energy, 2022, 232: 283-297.
doi: 10.1016/j.solener.2021.11.048 URL |
[1] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[2] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[3] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[4] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[5] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[6] | 操太春, 吴刚, 孔祥逸, 于东玮, 吴琳, 张大勇. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23. |
[7] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[8] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[9] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[10] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[11] | 郭涛, 刘明明, 曹蕾, 胡京招, 洪国军, 尤云祥. 疏浚泵内泥沙颗粒的瞬态追踪数值方法[J]. 上海交通大学学报, 2022, 56(5): 656-663. |
[12] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[13] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[14] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[15] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||