上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 994-1003.doi: 10.16183/j.cnki.jsjtu.2021.416

• 新型电力系统与综合能源 • 上一篇    下一篇

基于无人机航拍的绝缘子掉串实时检测研究

李登攀1, 任晓明1(), 颜楠楠2,3   

  1. 1.上海电机学院 电气学院, 上海 201306
    2.国网华东电力试验研究院有限公司, 上海 200437
    3.复旦大学类脑智能科学与技术研究院, 上海 200433
  • 收稿日期:2021-10-18 出版日期:2022-08-28 发布日期:2022-08-26
  • 通讯作者: 任晓明 E-mail:renxm@sdju.edu.cn
  • 作者简介:李登攀(1996-),男,河南省焦作市人,硕士生,从事新能源发电及并网技术研究.
  • 基金资助:
    上海市科技重大专项(2018SHZDZX01)

Real-Time Detection of Insulator Drop String Based on UAV Aerial Photography

LI Dengpan1, REN Xiaoming1(), YAN Nannan2,3   

  1. 1. School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China
    2. State Grid East China Electric Power Test and Research Institute Co., Ltd., Shanghai 200437, China
    3. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
  • Received:2021-10-18 Online:2022-08-28 Published:2022-08-26
  • Contact: REN Xiaoming E-mail:renxm@sdju.edu.cn

摘要:

由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%.

关键词: 无人机, 绝缘子掉串, 双向特征金字塔网络结构, γ系数剪枝微调, DIoU损失函数, 图像增强

Abstract:

It is of great significance for unmanned aerial vehicle(UAV) to replace manual inspection of power insulators. Aimed at the problem of limited computing power and storage resources of the UAV, an improved real-time target detection algorithm suitable for insulator drop string failure detection is proposed. Based on the YOLOv5s detection network, first, the PANet networks in neck are replaced with bi-directional feature pyramid network(BiFPN) to improve the feature fusion ability. Next, DIoU is used to optimize the loss function to optimize the model. The channel pruning and fine tuning of the γ coefficient generally improve the accuracy, speed, and deployment ability of the detection network. Finally, the image is enhanced at the network output to improve the availability of the algorithm. The proposed algorithm is tested under a specially expanded insulator fault data set. The results show that compared with the original YOLOv5s algorithm, the average accuracy of the proposed algorithm is improved by 3.91%, the detection speed is improved by 25.6%, and the model volume is reduced by 59.1%.

Key words: unmanned aerial vehicle (UAV), insulator drop string, bi-directional feature pyramid network (BiFPN), γ coefficient pruning fine adjustment, DIoU loss function, image enhancement

中图分类号: