上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1004-1013.doi: 10.16183/j.cnki.jsjtu.2021.486
李恒杰1,3, 朱江皓1, 傅晓飞2, 方陈2, 梁达明1, 周云3()
收稿日期:
2021-11-30
出版日期:
2022-08-28
发布日期:
2022-08-26
通讯作者:
周云
E-mail:yun.zhou@sjtu.edu.cn
作者简介:
李恒杰(1981-),男,陕西省西安市人,副教授,主要从事电气交通融合与用电能效管理的研究.
基金资助:
LI Hengjie1,3, ZHU Jianghao1, FU Xiaofei2, FANG Chen2, LIANG Daming1, ZHOU Yun3()
Received:
2021-11-30
Online:
2022-08-28
Published:
2022-08-26
Contact:
ZHOU Yun
E-mail:yun.zhou@sjtu.edu.cn
摘要:
精确的电动汽车充电站充电负荷预测是提高充电站安全经济运行的重要措施,也是支撑充电基础设施新建、扩容规划决策的重要基础.为提高电动汽车充电站超短期充电负荷预测的精度,提出一种基于集成学习的充电站超短期充电负荷预测方法.首先,以预测精确度与响应速度为主要目标,使用轻量级梯度提升框架构建基础回归器模型;其次,通过自适应提升方法对基础回归器群进行集成;最后,通过超参数调整与优化,建立基于能量集成轻量梯度提升框架(EEB-LGBM)的双层充电站超短期充电负荷预测模型.算例结果表明,相较于反向传播神经网络、卷积神经长短期记忆网络、差分自回归移动平均模型等预测模型,所提出的基于EEB-LGBM的超短期充电负荷预测模型具有更高的精确度,同时可以大幅度缩短训练时间和降低计算资源需求.
中图分类号:
李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013.
LI Hengjie, ZHU Jianghao, FU Xiaofei, FANG Chen, LIANG Daming, ZHOU Yun. Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1004-1013.
表2
16种不同算法基础回归器框架的名称与简称
序号 | 算法名称 | 简称 |
---|---|---|
1 | Light Gradient Boosting Machin | LGBM |
2 | Extra Trees Regressor | Et |
3 | Random Forest | Rf |
4 | Gradient Boosting Regressor | Gbr |
5 | Decision Tree | Dt |
6 | Bayesian Ridge | Br |
7 | Ridge Regression | Ridge |
8 | AdaBoost Regressor | Ada |
9 | Lasso Regression | Lasso |
10 | Linear Regression | Lr |
11 | Elastic Net | En |
12 | Orthogonal Matching Pursuit | Omp |
13 | Lasso Least Angle Regression | Llar |
14 | K Neighbors Regressor | Knr |
15 | Huber Regressor | Huber |
16 | Passive Aggressive Regressor | Par |
表3
16种基础回归器性能对比
模型 | MAE | MSE | RMSD | R2 | MAPE | RMSE | TT/s |
---|---|---|---|---|---|---|---|
LGBM | 1.4835 | 9.9652 | 3.1472 | 0.9271 | 1.4090 | 0.1603 | 0.9520 |
Et | 1.4767 | 10.9566 | 3.2791 | 0.9166 | 1.1199 | 0.1542 | 19.9650 |
Rf | 1.4707 | 11.0504 | 3.2915 | 0.9161 | 1.2410 | 0.1519 | 10.6240 |
Gbr | 1.7289 | 11.1057 | 3.3130 | 0.9156 | 1.9650 | 0.1876 | 37.1450 |
Dt | 1.7881 | 16.4038 | 3.9911 | 0.8900 | 1.4830 | 0.1817 | 1.2130 |
Br | 3.6100 | 34.2069 | 5.8318 | 0.8016 | 7.4220 | 0.4518 | 247.2700 |
Ridge | 3.6205 | 34.3932 | 5.8494 | 0.8005 | 7.3350 | 0.4535 | 1.9980 |
Ada | 4.8668 | 37.4468 | 6.0925 | 0.7160 | 11.5790 | 0.5769 | 56.5100 |
Lasso | 3.5851 | 38.7354 | 6.2008 | 0.7797 | 6.7480 | 0.4169 | 0.4880 |
Lr | 4.0792 | 38.8846 | 6.2222 | 0.7782 | 8.4950 | 0.5090 | 29.1220 |
En | 3.5522 | 39.6849 | 6.2760 | 0.7750 | 6.2390 | 0.4039 | 0.6320 |
Omp | 3.4045 | 42.6831 | 6.5088 | 0.7602 | 4.9530 | 0.3717 | 1.5520 |
Llar | 10.6004 | 202.9634 | 14.2317 | -0.0014 | 26.0870 | 0.9852 | 0.8980 |
Knr | 10.7520 | 226.0024 | 15.0233 | -0.1179 | 25.1830 | 0.9985 | 9.7160 |
Huber | 9.3039 | 234.1162 | 15.2823 | -0.1545 | 14.4480 | 0.9020 | 10.5580 |
Par | 14.9551 | 318.1632 | 17.6986 | -0.5662 | 20.0780 | 1.3277 | 1.7940 |
[1] | 陈文彬, 徐大勇, 郭瑞鹏. 负荷预测对新能源电网多目标优化调度的影响规律研究[J]. 电力系统保护与控制, 2020, 48(10): 46-51. |
CHEN Wenbin, XU Dayong, GUO Ruipeng. A study on the influence rule of load forecasting on multi-objective optimal dispatching of a new-energy grid[J]. Power System Protection and Control, 2020, 48(10): 46-51. | |
[2] | 孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2898. |
SUN Chao, LÜ Qi, ZHU Sitong, et al. Ultra-short-term power load forecasting based on two-layer XGBoost algorithm considering the influence of multiple features[J]. High Voltage Engineering, 2021, 47(8): 2885-2898. | |
[3] | 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7): 2719-2730. |
LI Yuzhi, LIU Xiaoliang, XING Fangfang, et al. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7): 2719-2730. | |
[4] | 罗凤章, 张旭, 杨欣, 等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术, 2021, 47(1): 23-32. |
LUO Fengzhang, ZHANG Xu, YANG Xin, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32. | |
[5] | 谭嘉, 李知艺, 杨欢, 等. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553. |
TAN Jia, LI Zhiyi, YANG Huan, et al. A multi-level collaborative load forecasting method for distribution networks based on distributed optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. | |
[6] | 钟光耀, 邰能灵, 黄文焘, 等. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
ZHONG Guangyao, TAI Nengling, HUANG Wentao, et al. Attention short-term forecasting method of distribution load based on multi-dimensional clustering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1532-1543. | |
[7] | 林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45(11): 52-60. |
LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45(11): 52-60. | |
[8] | 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14): 4858-4867. |
XIAO Bai, XIAO Zhifeng, JIANG Zhuo, et al. Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long short-term memory neural networks[J]. Proceedings of the CSEE, 2021, 41(14): 4858-4867. | |
[9] | 范士雄, 刘幸蔚, 於益军, 等. 基于多源数据和模型融合的超短期母线负荷预测方法[J]. 电网技术, 2021, 45(1): 243-250. |
FAN Shixiong, LIU Xingwei, YU Yijun, et al. Multi-source data and hybrid neural network based ultra-short-term bus load forecasting[J]. Power System Technology, 2021, 45(1): 243-250. | |
[10] | 张金金, 张倩, 马愿, 等. 基于改进的随机森林和密度聚类的短期负荷频域预测方法[J]. 控制理论与应用, 2020, 37(10): 2257-2265. |
ZHANG Jinjin, ZHANG Qian, MA Yuan, et al. Short-term load frequency domain prediction method based on improved random forest and density-based spatial clustering of applications with noise[J]. Control Theory & Applications, 2020, 37(10): 2257-2265. | |
[11] | 罗平, 程晟, 王严, 等. 考虑用户出行特性的电动汽车充电负荷预测[J]. 华中科技大学学报(自然科学版), 2020, 48(11): 126-132. |
LUO Ping, CHENG Sheng, WANG Yan, et al. Electric vehicle charging load forecast considering user's travel characteristics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(11): 126-132. | |
[12] |
MA X J, SHA J L, WANG D H, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31: 24-39.
doi: 10.1016/j.elerap.2018.08.002 URL |
[13] |
SHAKER B, YU M S, SONG J S, et al. LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM[J]. Bioinformatics, 2020, 37(8): 1135-1139.
doi: 10.1093/bioinformatics/btaa918 URL |
[14] |
WANG Y Y, CHEN J, CHEN X Q, et al. Short-term load forecasting for industrial customers based on TCN-LightGBM[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1984-1997.
doi: 10.1109/TPWRS.2020.3028133 URL |
[15] | KE G, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154. |
[16] | MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: A fast scalable classifier for data mining[C]// Advances in Database Technology - EDBT '96. Avignon, France: Springer, 1996: 18-32. |
[17] | ZHOU Z H. Ensemble Methods[M]. New York, USA: Chapman and Hall (CRC Press), 2012. |
[18] | REDDY L N, BUTAKOV S, ZAVARSKY P. Applying ML algorithms to improve traffic classification in intrusion detection systems[C]// 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing. Beijing, China: IEEE, 2020: 1-6. |
[19] | COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15-18. |
[20] |
LING R F. Residuals and influence in regression[J]. Technometrics, 2012, 26(4): 413-415.
doi: 10.1080/00401706.1984.10487996 URL |
[21] | 李汉巨. 考虑气象因素累积效应的电力系统96点日负荷预测方法[J]. 电气技术, 2018, 19(4): 28-32. |
LI Hanju. The 96 point daily load forecasting method for power system considering the cumulative effect of meteorological factors[J]. Electrical Engineering, 2018, 19(4): 28-32. | |
[22] |
CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
doi: 10.7717/peerj-cs.623 URL |
[23] | BECTA. Elaadnl[EB/OL]. (2020-01-15)[2021-08-23]. https://platform.elaad.io/. |
[1] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
[2] | 黄金超1,马颖华1,齐开悦2,李怡晨1,夏元轶3. 一种基于集成学习的入侵检测算法[J]. 上海交通大学学报(自然版), 2018, 52(10): 1382-1387. |
[3] | 雷琪1, 2, 吴敏1. 经济性能评估的炼焦生产过程优化运行方法[J]. 上海交通大学学报(自然版), 2012, 46(12): 1914-1919. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||