上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1004-1013.doi: 10.16183/j.cnki.jsjtu.2021.486

• 新型电力系统与综合能源 • 上一篇    下一篇

基于集成学习的电动汽车充电站超短期负荷预测

李恒杰1,3, 朱江皓1, 傅晓飞2, 方陈2, 梁达明1, 周云3()   

  1. 1.兰州理工大学 电气工程与信息工程学院, 兰州 730050
    2.国网上海市电力公司, 上海 200122
    3.上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
  • 收稿日期:2021-11-30 出版日期:2022-08-28 发布日期:2022-08-26
  • 通讯作者: 周云 E-mail:yun.zhou@sjtu.edu.cn
  • 作者简介:李恒杰(1981-),男,陕西省西安市人,副教授,主要从事电气交通融合与用电能效管理的研究.
  • 基金资助:
    国家自然科学基金项目(52167014);教育部产学合作协同育人项目(202002010028);上海市科委技术标准项目(21DZ2204800);国家电网有限公司科技项目(52094021000F)

Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning

LI Hengjie1,3, ZHU Jianghao1, FU Xiaofei2, FANG Chen2, LIANG Daming1, ZHOU Yun3()   

  1. 1. School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    2. State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China
    3. Key Laboratory of Power Transmission and Power Conversion Control of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-11-30 Online:2022-08-28 Published:2022-08-26
  • Contact: ZHOU Yun E-mail:yun.zhou@sjtu.edu.cn

摘要:

精确的电动汽车充电站充电负荷预测是提高充电站安全经济运行的重要措施,也是支撑充电基础设施新建、扩容规划决策的重要基础.为提高电动汽车充电站超短期充电负荷预测的精度,提出一种基于集成学习的充电站超短期充电负荷预测方法.首先,以预测精确度与响应速度为主要目标,使用轻量级梯度提升框架构建基础回归器模型;其次,通过自适应提升方法对基础回归器群进行集成;最后,通过超参数调整与优化,建立基于能量集成轻量梯度提升框架(EEB-LGBM)的双层充电站超短期充电负荷预测模型.算例结果表明,相较于反向传播神经网络、卷积神经长短期记忆网络、差分自回归移动平均模型等预测模型,所提出的基于EEB-LGBM的超短期充电负荷预测模型具有更高的精确度,同时可以大幅度缩短训练时间和降低计算资源需求.

关键词: 电动汽车充电站, 充电负荷, 超短期预测, 集成学习, 经济性

Abstract:

Accurate electric vehicle load forecasting is the basis for maintaining the safe and economical operation of charging stations, and for supporting the planning and decision-making of new and expanded charging infrastructure. In order to improve the accuracy of the ultra-short-term load forecasting of charging stations, an ultra-short-term load forecasting method based on ensemble learning is proposed. First, aimed at the prediction accuracy and the response speed, the light gradient boosting machine (LightGBM) framework is utilized to build several basic regressors. Next, the basic regressors are integrated by using the adaptive boosting (Adaboost) method. Finally, by using hyperparameter adjustment and optimization, a dual-system for ultra-short-term load forecasting of charging stations named energy ensemble boosting-light gradient boosting machine (EEB-LGBM) is generated. The analysis of the numerical examples shows that the proposed model has a higher accuracy than the back propagation neural network (BPNN), convolutional neural networks-long short term memory (CNN-LSTM), autoregressive integrated moving average (ARIMA), and other load forecasting methods, which can greatly reduce the training time and the computing power requirements of the training platform.

Key words: electric vehicle charging station, charging load, ultra-short-term forecasting, ensemble learning, economy

中图分类号: