上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1014-1023.doi: 10.16183/j.cnki.jsjtu.2021.195
陈昌川1(), 刘凯1, 刘仁光1, 冯晓棕2, 覃延佳2, 代少升1, 张天骐1
收稿日期:
2021-06-08
出版日期:
2022-08-28
发布日期:
2022-08-26
作者简介:
陈昌川(1978-),男,四川省广安市人,副教授,从事智能信息处理、图像人工智能处理、特高频局放检测、红外成像与测温研究。电话(Tel.):13350370998;E-mail: 基金资助:
CHEN Changchuan1(), LIU Kai1, LIU Renguang1, FENG Xiaozong2, QIN Yanjia2, DAI Shaosheng1, ZHANG Tianqi1
Received:
2021-06-08
Online:
2022-08-28
Published:
2022-08-26
摘要:
局部放电检测中, 多种放电源与现场干扰源同时存在且不断变化,导致多种局部放电源难以有效分离及识别.提出一种高效自适应在线数据流(EAOStream)聚类算法,该算法采用自然邻域创建K-dimensional树来提高查询近邻的效率,即通过流数据的特征得到自适应的邻域半径和区域密度,从而能够局部搜索并形成团簇,实现多种局部放电源的实时在线分离.在人工数据集和真实数据集验证了EAOStream的优越性,通过与传统的DenStream和SE-Stream算法比较,将其应用于气体绝缘变电站故障的模式识别.实验测试结果表明:EAOStream在真实的网络入侵检测、森林覆盖类型及多源局部放电信号数据集的聚类准确度分别达到95.28%、98.47%及97.23%,验证了该算法在气体绝缘变电站故障诊断方面的实用性和有效性.
中图分类号:
陈昌川, 刘凯, 刘仁光, 冯晓棕, 覃延佳, 代少升, 张天骐. 基于多源局部放电信号数据流聚类分离方法[J]. 上海交通大学学报, 2022, 56(8): 1014-1023.
CHEN Changchuan, LIU Kai, LIU Renguang, FENG Xiaozong, QIN Yanjia, DAI Shaosheng, ZHANG Tianqi. Clustering Separation Method Based on Multi-Source Partial Discharge Signal Data Stream[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1014-1023.
表1
不同算法在真实数据集的性能对比
算法 | 数据集 | F | P | Fm |
---|---|---|---|---|
EAOStream | KDD CUP'99 | 95.95 | 95.28 | 97.49 |
Forest Covertype | 92.58 | 98.47 | 98.07 | |
MS-PD | 98.75 | 97.23 | 98.14 | |
DenStream | KDD CUP'99 | 90.35 | 89.25 | 89.92 |
Forest Covertype | 88.95 | 75.03 | 76.82 | |
MS-PD | 82.21 | 83.48 | 82.32 | |
SE-Stream | KDD CUP'99 | 97.62 | 90.27 | 91.33 |
Forest Covertype | 91.13 | 90.84 | 91.62 | |
MS-PD | 93.45 | 90.83 | 92.19 |
[20] |
LIAO R J, YANG L J, LI J, et al. Aging condition assessment of transformer oil-paper insulation model based on partial discharge analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 303-311.
doi: 10.1109/TDEI.2011.5704522 URL |
[21] | SAKO H, MIO K, OKADA S. Analysis of Phase Resolved Partial Discharge patterns with microstrip antenna[C]// 2015 IEEE Electrical Insulation Conference. Seattle, WA, USA: IEEE, 2015: 346-357. |
[1] |
LI G Y, WANG X H, LI X, et al. Partial discharge recognition with a multi-resolution convolutional neural network[J]. Sensors, 2018, 18(10): 1-27.
doi: 10.3390/s18010001 URL |
[2] | 段韶峰, 李志兵, 詹花茂, 等.252 kV GIS中特快速瞬态过电压和特快速瞬态电流特性试验研究[J]. 电网技术, 2015, 39(7): 2046-2051. |
DUAN Shaofeng, LI Zhibing, ZHAN Huamao, et al. Experimental study on the characteristics of VFTO and VFTC in 252 kV GIS[J]. Power System Technology, 2015, 39(7): 2046-2051. | |
[3] | 周承科, 李明贞, 王航, 等. 电力电缆资产的状态评估与运维决策综述[J]. 高电压技术, 2016, 42(8): 2353-2362. |
ZHOU Chengke, LI Mingzhen, WANG Hang, et al. Review of condition assessment and maintenance strategy of power cable assets[J]. High Voltage Engineering, 2016, 42(8): 2353-2362. | |
[4] |
ZHU M X, XUE J Y, ZHANG J N, et al. Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique[J]. IET Science, Measurement & Technology, 2016, 10(4): 316-326.
doi: 10.1049/iet-smt.2015.0171 URL |
[5] | 卢启付, 李端姣, 唐志国, 等. 局部放电特高频检测技术[M]. 北京: 中国电力出版社, 2017. |
LU Qifu, LI Duanjiao, TANG Zhiguo, et al. Partial discharge ultra-high frequency detection technology[M]. Beijing: China Electric Power Press, 2017. | |
[6] | 郭俊, 吴广宁, 张血琴, 等. 局部放电检测技术的现状和发展[J]. 电工技术学报, 2005, 20(2): 29-35. |
GUO Jun, WU Guangning, ZHANG Xueqin, et al. The actuality and perspective of partial discharge detection techniques[J]. Transactions of China Electrotechnical Society, 2005, 20(2): 29-35. | |
[7] |
BELTLE M, MULLER A, TENBOHLEN S. Statistical analysis of online ultrahigh-frequency partial-discharge measurement of power transformers[J]. IEEE Electrical Insulation Magazine, 2012, 28(6): 17-22.
doi: 10.1109/MEI.2012.6340520 URL |
[8] | 张广东, 秦睿, 张忠元, 等. 基于超高频特高频法的GIS局部放电特征图谱提取与研究[J]. 高压电器, 2016, 52(9): 71-77. |
ZHANG Guangdong, QIN Rui, ZHANG Zhongyuan, et al. Extraction and analysis of characteristic spectrum of partial discharge in GIS based on UHF method[J]. High Voltage Apparatus, 2016, 52(9): 71-77. | |
[9] | 代少升, 杨雨, 聂合文, 等. UHF局部放电信号包络检波电路设计与实现[J]. 重庆邮电大学学报(自然科学版), 2021, 33(5): 736-742. |
DAI Shaosheng, YANG Yu, NIE Hewen, et al. UHF partial discharge signal envelope detection circuit design and implementation[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition): 2021, 33(5): 736-742. | |
[10] |
TAREQ M, SUNDARARAJAN E A, MOHD M, et al. Online clustering of evolving data streams using a density grid-based method[J]. IEEE Access, 2020, 8: 166472-166490.
doi: 10.1109/ACCESS.2020.3021684 URL |
[11] |
PUTRI G H, READ M N, KOPRINSKA I, et al. ChronoClust: Density-based clustering and cluster tracking in high-dimensional time-series data[J]. Knowledge-Based Systems, 2019, 174: 9-26.
doi: 10.1016/j.knosys.2019.02.018 URL |
[12] |
ISLAM M K, AHMED M M, ZAMLI K Z. A buffer-based online clustering for evolving data stream[J]. Information Sciences, 2019, 489: 113-135.
doi: 10.1016/j.ins.2019.03.022 URL |
[13] | 郑祺, 黄德才. 基于引力相似度和相对密度的不确定数据流聚类[J]. 上海交通大学学报, 2016, 50(6): 873-878. |
ZHENG Qi, HUANG Decai. Uncertain data stream clustering algorithm based on gravity similarity and relative density techniques[J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 873-878. | |
[14] |
XU J, WANG G Y, LI T R, et al. Fat node leading tree for data stream clustering with density peaks[J]. Knowledge-Based Systems, 2017, 120: 99-117.
doi: 10.1016/j.knosys.2016.12.025 URL |
[15] | 龙真真, 张策, 王维平, 等. 一种基于数据流聚类的动态目标分群框架[J]. 上海交通大学学报, 2010, 44(7): 921-925. |
LONG Zhenzhen, ZHANG Ce, WANG Weiping, et al. A dynamic framework for target-grouping based on clustering data streams[J]. Journal of Shanghai Jiao Tong University, 2010, 44(7): 921-925. | |
[16] |
HAHSLER M, BOLAÑOS M. Clustering data streams based on shared density between micro-clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(6): 1449-1461.
doi: 10.1109/TKDE.2016.2522412 URL |
[17] | 于晓飞, 葛洪伟. 噪声环境下复杂流形数据的势能层次聚类算法[J]. 重庆邮电大学学报(自然科学版), 2018, 30(6): 848-854. |
YU Xiaofei, GE Hongwei. A hierarchical clustering algorithm of potential energy for complex manifold data in noisy environment[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(6): 848-854. | |
[18] | CAO F, ESTERT M, QIAN W N, et al. Density-based clustering over an evolving data stream with noise[C]// Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2006: 328-339. |
[19] | CHAIRUKWATTANA R, KANGKACHIT T, RAKTHANMANON T, et al. Efficient evolution-based clustering of high dimensional data streams with dimension projection[C]// 2013 International Computer Science and Engineering Conference. Nakhonpathom, Thailand: IEEE, 2013: 185-190. |
[22] |
BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.
doi: 10.1145/361002.361007 URL |
[1] | 李双, 施建强. 基于新型双环控制的LC型逆变器研究[J]. 上海交通大学学报, 2022, 56(9): 1139-1147. |
[2] | 欧阳旭宇, 常海超, 刘祖源, 冯佰威, 詹成胜, 程细得. 自适应采样方法在船型优化中的应用[J]. 上海交通大学学报, 2022, 56(7): 937-943. |
[3] | 张绍广, 肖茂超, 张宇飞, 陈海昕. 细长旋成体大攻角非对称涡模拟的扰动引入方式研究[J]. 空天防御, 2022, 5(3): 10-16. |
[4] | 丁明, 孟帅, 王书恒, 夏玺. 六自由度波浪补偿平台的神经网络自适应反馈线性化控制[J]. 上海交通大学学报, 2022, 56(2): 165-172. |
[5] | 汤洪涛, 王丹南, 邵益平, 赵文彬, 江伟光, 陈青丰. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213. |
[6] | 张文佳, 马辛. 深空探测器接近段自主导航的滑动窗口自适应滤波方法[J]. 上海交通大学学报, 2022, 56(11): 1461-1469. |
[7] | 周齐贤, 王寅, 孙学安. 基于增益自适应超螺旋滑模理论的无人机控制[J]. 上海交通大学学报, 2022, 56(11): 1453-1460. |
[8] | 马航宇, 周笛, 卫宇杰, 吴伟, 潘尔顺. 变工况下基于自适应深度置信网络的轴承智能故障诊断[J]. 上海交通大学学报, 2022, 56(10): 1368-1377. |
[9] | 方明, 赵婵娟, 赵春雷, 徐安祺, 陈剑. 基于STAP的行进间车载雷达杂波抑制技术研究[J]. 空天防御, 2022, 5(1): 71-77. |
[10] | 顾念祖, 陶青长, 邢飞, 孙炘, 吴志林, 尤政. 基于ESPRIT+GS-SMI算法的抗卫星导航欺骗干扰技术研[J]. 空天防御, 2022, 5(1): 78-85. |
[11] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[12] | 张峻宁, 苏群星, 王成, 徐超, 李一宁. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168. |
[13] | 许常悦, 郑静, 王哲, 王彬. 方柱跨声速流动中的剪切层和尾迹特性[J]. 上海交通大学学报, 2021, 55(4): 403-411. |
[14] | 王悦行, 吴永国, 徐传刚. 基于深度迁移学习的红外舰船目标检测算法[J]. 空天防御, 2021, 4(4): 61-66. |
[15] | 胡锦昊, 王明昊, 夏天扬, 王悦行, 杜海静, 徐传刚. 基于HSV色彩空间的红外与可见光图像融合方法[J]. 空天防御, 2021, 4(4): 87-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||