上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (2): 134-142.doi: 10.16183/j.cnki.jsjtu.2021.075
收稿日期:
2020-03-11
出版日期:
2022-02-28
发布日期:
2022-03-03
通讯作者:
王易因
E-mail:yiyinwang@sjtu.edu.cn
作者简介:
李钰(1995-),女,山东省潍坊市人,硕士生,主要从事模式识别研究.
基金资助:
LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin()
Received:
2020-03-11
Online:
2022-02-28
Published:
2022-03-03
Contact:
WANG Yiyin
E-mail:yiyinwang@sjtu.edu.cn
摘要:
提出一种基于生成对抗模型的水下图像修正与增强算法.该算法将多尺度内核应用于改进的残差模块中,以此构建生成器,实现多感受野特征信息的提取与融合;判别器设计考虑了全局信息与局部细节的关系,建立了全局-区域双判别结构,能够保证整体风格与边缘纹理的一致性;最后,根据人类视觉感官系统设计了无监督损失函数,此部分无需参考图像进行约束,同时其与对抗损失和内容损失一起进行联合优化,能够得到更优的色彩和结构表现.在多个数据集上进行实验分析表明,此算法能较好地修正色偏、对比度,保护细节信息不丢失,在主客观指标上都优于典型对比算法.
中图分类号:
李钰, 杨道勇, 刘玲亚, 王易因. 利用生成对抗网络实现水下图像增强[J]. 上海交通大学学报, 2022, 56(2): 134-142.
LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142.
表2
各增强算法在合成数据集上的评价指标对比
算法 | PSNR | SSIM | UIQM | CCF | 信息熵 |
---|---|---|---|---|---|
原图 | 17.180 | 0.628 | 2.589 | 24.285 | 7.135 |
文献[ | 14.782 | 0.567 | 2.892 | 23.308 | 7.526 |
文献[ | 18.063 | 0.686 | 2.409 | 26.919 | 7.547 |
文献[ | 16.507 | 0.657 | 2.699 | 25.787 | 7.744 |
文献[ | 18.612 | 0.714 | 3.216 | 26.866 | 7.519 |
文献[ | 18.776 | 0.698 | 3.219 | 27.710 | 7.262 |
文献[ | 16.153 | 0.588 | 2.995 | 16.997 | 6.749 |
本文算法 | 26.094 | 0.835 | 3.378 | 31.139 | 7.786 |
表3
各增强算法在多场景数据上的评价指标对比
算法 | 场景 | UIQM | CCF | 信息熵 |
---|---|---|---|---|
文献[ | 场景1 | 3.079 | 20.426 | 7.507 |
场景2 | 2.420 | 19.494 | 7.051 | |
场景3 | 3.032 | 21.242 | 7.343 | |
场景4 | 3.382 | 21.134 | 7.454 | |
场景5 | 2.898 | 15.489 | 7.233 | |
文献[ | 场景1 | 2.904 | 21.673 | 7.494 |
场景2 | 2.011 | 21.904 | 7.168 | |
场景3 | 3.059 | 21.286 | 7.519 | |
场景4 | 3.293 | 20.427 | 7.329 | |
场景5 | 2.690 | 16.985 | 7.305 | |
文献[ | 场景1 | 3.022 | 22.459 | 7.549 |
场景2 | 2.623 | 21.427 | 7.247 | |
场景3 | 3.050 | 22.523 | 7.625 | |
场景4 | 3.340 | 21.842 | 7.472 | |
场景5 | 2.875 | 17.364 | 7.357 | |
文献[ | 场景1 | 3.225 | 23.419 | 7.484 |
场景2 | 2.505 | 20.444 | 7.232 | |
场景3 | 3.121 | 20.302 | 7.532 |
续表3
算法 | 场景 | UIQM | CCF | 信息熵 |
---|---|---|---|---|
场景4 | 3.429 | 23.140 | 7.467 | |
场景5 | 3.042 | 16.458 | 7.262 | |
文献[ | 场景1 | 2.541 | 17.698 | 6.623 |
场景2 | 2.851 | 19.053 | 6.997 | |
场景3 | 2.669 | 12.017 | 6.459 | |
场景4 | 3.198 | 14.953 | 6.581 | |
场景5 | 2.270 | 10.881 | 6.244 | |
文献[ | 场景1 | 2.418 | 12.589 | 6.403 |
场景2 | 3.108 | 16.396 | 6.846 | |
场景3 | 2.668 | 14.434 | 6.926 | |
场景4 | 2.912 | 11.469 | 6.162 | |
场景5 | 2.560 | 13.142 | 6.917 | |
本文算法 | 场景1 | 3.421 | 25.313 | 7.701 |
场景2 | 3.307 | 23.828 | 7.698 | |
场景3 | 3.272 | 24.259 | 7.698 | |
场景4 | 3.477 | 26.109 | 7.731 | |
场景5 | 3.194 | 19.491 | 7.444 |
[1] | WHITCOMB L, YOERGER D R, SINGH H, et al. Advances in underwater robot vehicles for deep ocean exploration: Navigation, control, and survey operations[M]//Robotics Research. New York, USA: Springer International Publishing, 2000: 439-448. |
[2] | LU H M, LI Y J, SERIKAWA S. Computer vision for ocean observing[M]//Artificial Intelligence and Computer Vision. New York, USA: Springer International Publishing, 2016: 1-16. |
[3] |
GAUDRON J O, SURRE F, SUN T, et al. Long period grating-based optical fibre sensor for the underwater detection of acoustic waves[J]. Sensors and Actuators A: Physical, 2013, 201:289-293.
doi: 10.1016/j.sna.2013.07.017 URL |
[4] |
YAN Z, MA J, TIAN J W, et al. A gravity gradient differential ratio method for underwater object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):833-837.
doi: 10.1109/LGRS.2013.2279485 URL |
[5] |
WANG Y, SONG W, FORTINO G, et al. An experimental-based review of image enhancement and image restoration methods for underwater imaging[J]. IEEE Access, 2019, 7:140233-140251.
doi: 10.1109/Access.6287639 URL |
[6] |
YANG M, HU J T, LI C Y, et al. An in-depth survey of underwater image enhancement and restoration[J]. IEEE Access, 2019, 7:123638-123657.
doi: 10.1109/Access.6287639 URL |
[7] |
LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29:4376-4389.
doi: 10.1109/TIP.83 URL |
[8] |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
doi: 10.1109/TPAMI.2010.168 URL |
[9] | DREWS JR P, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]// 2013 IEEE International Conference on Computer Vision Workshops. Sydney, NSW, Australia: IEEE, 2013: 825-830. |
[10] | WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement[C]// 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE, 2017: 1382-1386. |
[11] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.
doi: 10.1145/3422622 URL |
[12] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2242-2251. |
[13] |
ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3227-3234.
doi: 10.1109/LSP.2016. URL |
[14] | LI Y, YU W B, LIU L Y, et al. SRM-net: An effective end-to-end neural network for single image dehazing[C]// Proceedings of the 3rd International Conference on Video and Image Processing. New York, NY, USA: ACM, 2019: 74-78. |
[15] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].(2016 -04-30)[2020-10-13].https://arxiv.org/abs/1511.07122. |
[16] | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4):1-14. |
[17] | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].(2015 -11-15)[2020-10-13]. https://www.researchgate.net/publication/284476553_Unsupervised_Representation_Learning_with_Deep_Convolutional_Generative_Adversarial_Networks. |
[18] | BARBOSA W V, AMARAL H G B, ROCHA T L, et al. Visual-quality-driven learning for underwater vision enhancement[C]// 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE, 2018: 3933-3937. |
[19] | YAN Y F. Color image quality measures and retrieval[D]. New Jersey, USA: New Jersey Insititute of Techonlogy, 2006. |
[20] |
RUDERMAN D L, CRONIN T W, CHIAO C C. Statistics of cone responses to natural images: Implications for visual coding[J]. Journal of the Optical Society of America A, 1998, 15(8):2036.
doi: 10.1364/JOSAA.15.002036 URL |
[21] | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Computer Vision-ECCV 2016. Amsterdam, The Netherlands: ECCV, 2016: 694-711. |
[22] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014 -09-02) [2020-10-13]. https://www.researchgate.net/publication/319770291_Very_Deep_Convolutional_Networks_for_Large-Scale_Image_Recognition. |
[23] | GHANI A S A, ISA N A M. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching[C]// 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin). Berlin, Germany: IEEE, 2014: 219-220. |
[24] | HUANG D M, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//International Conference on Multimedia Modeling. Bangkok, Thailand: MMM, 2018: 453-465. |
[25] | ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 81-88. |
[26] |
ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1):379-393.
doi: 10.1109/TIP.83 URL |
[27] |
LI C Y, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98:107038.
doi: 10.1016/j.patcog.2019.107038 URL |
[28] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2242-2251. |
[1] | 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565. |
[2] | 祁生勇, 臧月进, 吕国云, 杜明. 基于生成对抗网络的空中目标图像生成算法研究[J]. 空天防御, 2021, 4(2): 67-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||