上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (2): 134-142.doi: 10.16183/j.cnki.jsjtu.2021.075

• • 上一篇    下一篇

利用生成对抗网络实现水下图像增强

李钰, 杨道勇, 刘玲亚, 王易因()   

  1. 上海交通大学 电子信息与电气工程学院, 上海 200240
  • 收稿日期:2020-03-11 出版日期:2022-02-28 发布日期:2022-03-03
  • 通讯作者: 王易因 E-mail:yiyinwang@sjtu.edu.cn
  • 作者简介:李钰(1995-),女,山东省潍坊市人,硕士生,主要从事模式识别研究.
  • 基金资助:
    国家自然科学基金(61633017);国家自然科学基金(61773264);国家自然科学基金(61801295);上海交通大学“深蓝计划”资助项目(SL2020MS011);上海交通大学“深蓝计划”资助项目(SL2020MS015)

Underwater Image Enhancement Based on Generative Adversarial Networks

LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin()   

  1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-03-11 Online:2022-02-28 Published:2022-03-03
  • Contact: WANG Yiyin E-mail:yiyinwang@sjtu.edu.cn

摘要:

提出一种基于生成对抗模型的水下图像修正与增强算法.该算法将多尺度内核应用于改进的残差模块中,以此构建生成器,实现多感受野特征信息的提取与融合;判别器设计考虑了全局信息与局部细节的关系,建立了全局-区域双判别结构,能够保证整体风格与边缘纹理的一致性;最后,根据人类视觉感官系统设计了无监督损失函数,此部分无需参考图像进行约束,同时其与对抗损失和内容损失一起进行联合优化,能够得到更优的色彩和结构表现.在多个数据集上进行实验分析表明,此算法能较好地修正色偏、对比度,保护细节信息不丢失,在主客观指标上都优于典型对比算法.

关键词: 水下图像增强, 生成对抗网络, 残差结构, 无监督学习

Abstract:

This paper proposes an underwater image correction and enhancement algorithm based on generative adversarial networks. In this algorithm, the multi-scale kernel is applied to the improved residual module to construct a generator, which realizes the extraction and fusion of multiple receptive fields feature information. The discriminator design considers the relationship between global information and local details, and establishes a global-region dual discriminator structure, which can ensure the consistency of overall style and edge texture. An unsupervised loss function based on human visual sensory system is proposed. Reference image constraints are not required, and the confrontation loss and the content loss are jointly optimized to obtain better color and structure performance. Experimental evaluations on multiple data sets show that the proposed algorithm can better correct color deviation and contrast, protect details from loss, and is superior to typical algorithms in subjective and objective indexes.

Key words: underwater image enhancement, generative adversarial networks, residual structure, unsupervised learning

中图分类号: