上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1024-1033.doi: 10.16183/j.cnki.jsjtu.2021.154
收稿日期:
2021-05-06
出版日期:
2022-08-28
发布日期:
2022-08-26
通讯作者:
王石刚
E-mail:wangshigang@sjtu.edu.cn
作者简介:
黄宇昊(1998-),男,江西省抚州市人,硕士生,主要从事无人机自主导航技术研究.
HUANG Yuhao1, HAN Chao1, ZHAO Minghui2, DU Qiankun1, WANG Shigang1()
Received:
2021-05-06
Online:
2022-08-28
Published:
2022-08-26
Contact:
WANG Shigang
E-mail:wangshigang@sjtu.edu.cn
摘要:
针对无人机在复杂环境下难以规划出兼顾平滑性和安全性等指标的时域连续轨迹问题,基于安全飞行通道提出了一种多目标轨迹规划算法.在基于快速拓展随机树(RRT)改进的RRT*算法生成的初始离散路径点基础上,建立以凸多面体集合表示的安全飞行通道;根据轨迹在安全飞行通道内部的约束建立安全项目标函数,结合飞行平滑性、动力学特性、飞行时间等性能指标,建立加权多目标优化函数;采用基于梯度下降的凸优化算法,对离散路径点的位置、速度、加速度及轨迹的时间分配进行优化,生成分段多项式表示的时域连续轨迹.基于煤矿井下等复杂环境对算法的有效性及相关性能进行试验及对比验证,结果表明:相比现有算法,本文算法在综合性能上有一定的提升.
中图分类号:
黄宇昊, 韩超, 赵明辉, 杜乾坤, 王石刚. 考虑安全飞行通道约束的无人机飞行轨迹多目标优化策略[J]. 上海交通大学学报, 2022, 56(8): 1024-1033.
HUANG Yuhao, HAN Chao, ZHAO Minghui, DU Qiankun, WANG Shigang. Multi-Objective Optimization Strategy of Trajectory Planning for Unmanned Aerial Vehicles Considering Constraints of Safe Flight Corridors[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1024-1033.
表1
不同障碍物密度下SFC与所提算法的性能对比
ρ | 本文算法 | SFC算法 | |||||||
---|---|---|---|---|---|---|---|---|---|
| omin/m | | tu/s | | omin/m | | tu/s | ||
0.02 | 1.286 | 0.510 | 0.397 | 1.137 | 1.302 | 0.473 | 0.363 | 1.190 | |
0.04 | 1.048 | 0.555 | 0.530 | 1.214 | 1.069 | 0.454 | 0.425 | 1.320 | |
0.06 | 1.059 | 0.528 | 0.499 | 1.540 | 1.085 | 0.446 | 0.411 | 1.756 | |
0.08 | 0.837 | 0.461 | 0.551 | 1.912 | 0.867 | 0.342 | 0.394 | 2.665 | |
0.10 | 0.781 | 0.462 | 0.592 | 1.994 | 0.802 | 0.359 | 0.448 | 2.355 | |
平均值 | 1.002 | 0.503 | 0.513 | 1.559 | 1.025 | 0.415 | 0.408 | 1.857 |
表2
通过安全飞行通道计算障碍物间隙及梯度的结果
pT/m | 安全飞行通道计算结果 | 栅格地图计算结果 | |||
---|---|---|---|---|---|
omin/m | g | omin/m | g | ||
(-7.34,-6.02, 2.00) | 1.15 | (-0.22,-0.98, 0.00) | 1.16 | (-0.18,-0.98, 0.00) | |
(-3.20,-1.51, 1.65) | 0.54 | (0.08, 0.99,-0.04) | 0.63 | (-0.31, 0.95, 0.00) | |
(1.02,-1.29, 1.18) | 0.93 | (0.98,-0.22, 0.05) | 0.94 | (0.97,-0.21, 0.01) | |
(4.28, 1.19, 1.09) | 0.90 | (-0.51, 0.86, 0.03) | 0.92 | (-0.49, 0.87, 0.01) |
[1] | ZHOU Y, RUI T, LI Y R, et al. A UAV patrol system using panoramic stitching and object detection[J]. Computers & Electrical Engineering, 2019, 80: 106473. |
[2] |
MANSOURI S S, KANELLAKIS C, KOMINIAK D, et al. Deploying MAVs for autonomous navigation in dark underground mine environments[J]. Robotics and Autonomous Systems, 2020, 126: 103472.
doi: 10.1016/j.robot.2020.103472 URL |
[3] | 赵建霞, 段海滨, 赵彦杰, 等. 基于鸽群层级交互的有人/无人机集群一致性控制[J]. 上海交通大学学报, 2020, 54(9): 973-980. |
ZHAO Jianxia, DUAN Haibin, ZHAO Yanjie, et al. Consensus control of manned-unmanned aerial vehicle swarm based on hierarchy interaction of pigeons[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 973-980. | |
[4] | CHANDLER B, GOODRICH M A. Online RRT and online FMT: Rapid replanning with dynamic cost[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017: 6313-6318. |
[5] | CAI Y Z, XI Q B, XING X J, et al. Path planning for UAV tracking target based on improved A-star algorithm[C]// 2019 1st International Conference on Industrial Artificial Intelligence. Shenyang, China: IEEE, 2019: 1-6. |
[6] | 郝钏钏, 方舟, 李平. 基于Q学习的无人机三维航迹规划算法[J]. 上海交通大学学报, 2012, 46(12): 1931-1935. |
HAO Chuanchuan, FANG Zhou, LI Ping. A 3-D route planning algorithm for unmanned aerial vehicle based on Q-learning[J]. Journal of Shanghai Jiao Tong University, 2012, 46(12): 1931-1935. | |
[7] | CHEN J, LIU T B, SHEN S J. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]// 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 1476-1483. |
[8] |
LIU S K, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695.
doi: 10.1109/LRA.2017.2663526 URL |
[9] | STOICAN F, PRODAN I, POPESCU D, et al. Constrained trajectory generation for UAV systems using a B-spline parametrization[C]// 2017 25th Mediterranean Conference on Control and Automation. Valletta, Malta: IEEE, 2017: 613-618. |
[10] |
SATAI H A, ZAHRA M M A, RASOOL Z I, et al. Bézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithms[J]. Sensors, 2021, 21(7): 2460.
doi: 10.3390/s21072460 URL |
[11] | RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]. New York, NY, USA: Springer, 2016: 649-666. |
[12] | INGERSOLL B T, INGERSOLL J K, DEFRANCO P, et al. UAV path-planning using bezier curves and a receding horizon approach[C]// AIAA Modeling and Simulation Technologies Conference. Reston, Virginia: AIAA, 2016: 3675. |
[13] | LOPEZ B T, HOW J P. Aggressive 3-D collision avoidance for high-speed navigation[C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5759-5765. |
[14] | MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]// 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2520-2525. |
[15] | OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV replanning[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016: 5332-5339. |
[16] | GAO F, LIN Y, SHEN S J. Gradient-based online safe trajectory generation for quadrotor flight in complex environments[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canda: IEEE, 2017: 3681-3688. |
[17] |
HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3): 189-206.
doi: 10.1007/s10514-012-9321-0 URL |
[18] |
SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573.
doi: 10.1137/S1052623499362822 URL |
[1] | 李登攀, 任晓明, 颜楠楠. 基于无人机航拍的绝缘子掉串实时检测研究[J]. 上海交通大学学报, 2022, 56(8): 994-1003. |
[2] | 罗菁, 张逸楠. 基于改进Grey-AHP的察打一体无人机作战效能评估方法[J]. 空天防御, 2022, 5(2): 1-7. |
[3] | 聂瑞, 王红茹. 基于神经网络观测器的无人机编队执行器故障诊断[J]. 空天防御, 2022, 5(2): 32-41. |
[4] | 李伟湋, 高培雪, 陈进, 路玉卿. 基于累积前景理论和三支决策的无人机态势评估[J]. 上海交通大学学报, 2022, 56(11): 1479-1490. |
[5] | 郭鹏军, 张睿, 高关根, 许斌. 基于相对速度和位置辅助的无人机编队协同导航[J]. 上海交通大学学报, 2022, 56(11): 1438-1446. |
[6] | 周齐贤, 王寅, 孙学安. 基于增益自适应超螺旋滑模理论的无人机控制[J]. 上海交通大学学报, 2022, 56(11): 1453-1460. |
[7] | 王克帆, 邱潇颀, 高长生, 荆武兴. 临近空间太阳能无人机横航向变质心控制技术[J]. 空天防御, 2021, 4(4): 29-36. |
[8] | 李臻, 许冰青, 李庆波, 鄢雄伟, 李博雅. 基于序列凸优化算法的飞行器轨迹规划[J]. 空天防御, 2021, 4(4): 50-56. |
[9] | 吴诗辉, 贾军, 鲍然, 周宇, 夏青元. 面向集群对抗的多弹协同目标分配模型与仿真分析[J]. 空天防御, 2021, 4(3): 1-9. |
[10] | 姚天成, 赵永生, 王红雨, 何炎平, 丁子龙, 池哲瀛, 蔡炜锴. 风光混合驱动长航程无人海空立体探测船研发[J]. 上海交通大学学报, 2021, 55(2): 215-220. |
[11] | 王晓军, 管宇锋. 基于TOPSIS法和仿真法的反集群无人机装备体系贡献率研究[J]. 空天防御, 2021, 4(1): 33-40. |
[12] | 李征, 陈建伟, 彭博. 基于伪谱法的无人机集群飞行路径规划[J]. 空天防御, 2021, 4(1): 52-59. |
[13] | 刘晨, 谢宝娣, 董国宝, 霍达, 段雨昕, 夏川. 基于自适应积分滑模的无人机编队控制器设计[J]. 空天防御, 2021, 4(1): 65-70. |
[14] | 王程, 倪旖, 李亮, 郭正勇, 陈兵. 针对小型商业无人机的预警技术发展现状与思考[J]. 空天防御, 2021, 4(1): 83-90. |
[15] | 梁烽杨, 杨毅钧, 刘功龙, 万兵, 高王升. 多无人机系统协同侦察规划算法研究[J]. 空天防御, 2021, 4(1): 103-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||