上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1034-1042.doi: 10.16183/j.cnki.jsjtu.2021.162
收稿日期:
2021-05-18
出版日期:
2022-08-28
发布日期:
2022-08-26
通讯作者:
饶宇
E-mail:yurao@sjtu.edu.cn
作者简介:
肖克华(1998-),男,安徽省安庆市人,硕士生,主要从事燃气轮机叶片冷却研究.
基金资助:
XIAO Kehua, LUO Jiahao, RAO Yu()
Received:
2021-05-18
Online:
2022-08-28
Published:
2022-08-26
Contact:
RAO Yu
E-mail:yurao@sjtu.edu.cn
摘要:
为研究涡轮叶片尾缘部分楔形通道交错肋流动传热性能,对其进行实验研究.实验应用瞬态液晶测试技术,对比研究了交错肋上、下主表面的局部传热特性,同时用压力扫描阀测得不同雷诺数下的通道压力损失.研究结果表明:尾缘段转折流动配置下,楔形通道交错肋上、下主表面传热差异显著,下主表面平均努塞尔数比上主表面平均高30%以上,尾缘楔形通道内交错肋结构主表面平均换热系数高出针肋结构约46%;交错肋上、下通道之间的交界面处存在强烈的质量交换作用,上、下主表面间断性的高换热区与上、下通道交界面呈现对应关系;随入口雷诺数的增加,通道压降快速增大.楔形通道交错肋压降是针肋的5~7倍,但其换热面积高出针肋107.4%,仍比针肋冷却增加约66%的综合换热性能.
中图分类号:
肖克华, 罗稼昊, 饶宇. 航空发动机涡轮叶片尾缘楔形通道交错肋冷却实验[J]. 上海交通大学学报, 2022, 56(8): 1034-1042.
XIAO Kehua, LUO Jiahao, RAO Yu. Experiment on Wedge-Shaped Latticework Channel Cooling Applied in Aero Engine Gas Turbine Blade Trailing Edge[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1034-1042.
[1] | HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. New York, USA: CRC Press, 2012. |
[2] | BUNKER R S. Latticework (vortex) cooling effectiveness-Part 1: Stationary channel experiments[C]// Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria: International Gas Turbine Institute, 2008: 909-918. |
[3] |
ACHARYA S, ZHOU F, LAGRONE J, et al. Latticework(vortex) cooling effectiveness: Rotating channel experiments[J]. Journal of Turbomachinery, 2005, 127(3): 471-478.
doi: 10.1115/1.1860381 URL |
[4] | GORELOV V, GOIKHENBERG M, MALKOV V. The investigation of heat transfer in cooled blades of gas turbines[C]// 26th Joint Propulsion Conference. Reston, Virginia: AIAA, 1990: 1-4. |
[5] | GILLESPIE D R H, IRELAND P T, DAILEY G M. Detailed flow and heat transfer coefficient measurements in a model of an internal cooling geometry employing orthogonal intersecting channels[C]// Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany: International Gas Turbine Institute, 2014: 1-8. |
[6] | 邓宏武, 谭艳, 王佳仁, 等. 带交错肋结构涡轮叶片复合通道的实验[J]. 航空动力学报, 2010, 25(9): 1931-1937. |
DENG Hongwu, TAN Yan, WANG Jiaren, et al. Experimental study on the turbine blade cooling channel with crossed-ribs[J]. Journal of Aerospace Power, 2010, 25(9): 1931-1937. | |
[7] | 邓宏武, 潘文艳, 陶智, 等. 开槽交错肋通道换热和流阻特性[J]. 北京航空航天大学学报, 2007, 33(10): 1158-1161. |
DENG Hongwu, PAN Wenyan, TAO Zhi, et al. Heat transfer and flow resistance in a notched crossed-rib channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1158-1161. | |
[8] |
RAO Y, ZANG S S. Flow and heat transfer characteristics in latticework cooling channels with dimple vortex generators[J]. Journal of Turbomachinery, 2014, 136(2): 021017.
doi: 10.1115/1.4025197 URL |
[9] | PARDESHI I, SHIH TOMI P, BRYDEN K M., et al. Flow and heat transfer in a rotating and non-rotating wedge-shaped cooling passage with ribs and pin fins[C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: AIAA, 2015: 1-10. |
[10] |
WAGNER G, KOTULLA M, OTT P, et al. The transient liquid crystal technique: Influence of surface curvature and finite wall thickness[J]. Journal of Turbomachinery, 2005, 127(1): 175-182.
doi: 10.1115/1.1811089 URL |
[11] |
EKKAD S V, HAN J C. A transient liquid crystal thermography technique for gas turbine heat transfer measurements[J]. Measurement Science and Technology, 2000, 11(7): 957-968.
doi: 10.1088/0957-0233/11/7/312 URL |
[12] | 许亚敏, 饶宇. 液晶热像测量精度分析及其在湍流传热研究中的应用[J]. 上海交通大学学报, 2013, 47(8): 1185-1190. |
XU Yamin, RAO Yu. Measurement accuracy and application of liquid crystal thermography technique in turbulent flow heat transfer[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1185-1190. | |
[13] |
SCHULZ S, BRACK S, TERZIS A, et al. On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals[J]. Experimental Thermal and Fluid Science, 2016, 70: 196-207.
doi: 10.1016/j.expthermflusci.2015.08.011 URL |
[14] |
MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
doi: 10.1016/0894-1777(88)90043-X URL |
[15] | CARCASCI C, FACCHINI B, PIEVAROLI M, et al. Heat transfer and pressure drop measurements on rotating matrix cooling geometries for airfoil trailing edges[C]// Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Quebec, Canada: International Gas Turbine Institute, 2015: 1-13. |
[16] |
SAHA K, ACHARYA S, NAKAMATA C. Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(1): 011001.
doi: 10.1115/1.4007277 URL |
[17] |
LIANG C, RAO Y, LUO, J, et al. Experimental and numerical study of turbulent flow and heat transfer in a wedge-shaped channel with guiding pin fins for turbine blade trailing edge cooling[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121590.
doi: 10.1016/j.ijheatmasstransfer.2021.121590 URL |
[18] |
GEE D L, WEBB R L. Forced convection heat transfer in helically rib-roughened tubes[J]. International Journal of Heat and Mass Transfer, 1980, 23(8): 1127-1136.
doi: 10.1016/0017-9310(80)90177-5 URL |
[1] | 邢建峰1,饶宇1,李博2,饶琨3. 具有微小V肋-凹陷复合结构表面湍流传热实验研究[J]. 上海交通大学学报(自然版), 2017, 51(1): 40-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||