上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (1): 81-88.doi: 10.16183/j.cnki.jsjtu.2020.210
收稿日期:
2020-07-08
出版日期:
2022-01-28
发布日期:
2022-01-21
通讯作者:
陈璐
E-mail:chenlu@sjtu.edu.cn
作者简介:
陈禹伊(1996-),女,重庆市人,硕士生,研究方向为路径规划.
基金资助:
Received:
2020-07-08
Online:
2022-01-28
Published:
2022-01-21
Contact:
CHEN Lu
E-mail:chenlu@sjtu.edu.cn
摘要:
在电商物流的“最后一公里”配送中,经验丰富的驾驶员(专家)并不总是基于最短路径成本矩阵进行路径规划.对此,提出一种逆向优化方法,通过学习专家的过往路径决策,得到能够代表专家经验的成本矩阵,并应用于路径规划模型求解,使得专家经验能够融入决策算法中.利用机器学习中的乘性权重更新算法实现对专家经验的学习.随机算例和电商实际算例的实验结果证明了方法的有效性.
中图分类号:
陈禹伊, 陈璐. 车辆路径规划问题的逆向优化方法[J]. 上海交通大学学报, 2022, 56(1): 81-88.
CHEN Yuyi, CHEN Lu. An Inverse Optimization Approach of Vehicle Routing Problem[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 81-88.
表2
MWU算法求解不同规模算例的结果
| ε1/% | ε2 | E | S/% | CPU/s |
---|---|---|---|---|---|
10 | 0.04 | 1.27 | 0.79 | 90.27 | 9460.87 |
15 | 0.32 | 4.25 | 1.14 | 91.29 | 16528.59 |
19 | 0.20 | 0.20 | 1.09 | 93.61 | 25344.56 |
21 | 0.24 | 1.02 | 2.06 | 89.17 | 27636.93 |
25 | 0.14 | 1.11 | 2.98 | 87.06 | 128741.12 |
34 | 0.08 | 3.26 | 3.57 | 88.86 | 89862.27 |
45 | 0.14 | 0.04 | 7.66 | 82.20 | 215451.29 |
56 | 0.12 | 0.03 | 10.02 | 81.96 | 345601.23 |
均值 | 0.16 | 1.40 | 3.66 | 88.05 | 107328.36 |
[1] | 范厚明, 徐振林, 李阳, 等. 混合遗传算法求解多中心联合配送路径问题[J]. 上海交通大学学报, 2019, 53(8):1000-1009. |
FAN Houming, XU Zhenlin, LI Yang, et al. Hybrid genetic algorithm for solving multi-depot joint distribution routing problem[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8):1000-1009. | |
[2] | 熊浩, 鄢慧丽, 周和平, 等. 多阶段动态车辆路径问题实时优化策略[J]. 上海交通大学学报, 2013, 47(3):450-453. |
XIONG Hao, YAN Huili, ZHOU Heping, et al. Real-time optimization strategy of the multi-period dynamic vehicle routing problems[J]. Journal of Shanghai Jiao Tong University, 2013, 47(3):450-453. | |
[3] |
BERTSIMAS D, GUPTA V, PASCHALIDIS I C. Data-driven estimation in equilibrium using inverse optimization[J]. Mathematical Programming, 2015, 153(2):595-633.
doi: 10.1007/s10107-014-0819-4 URL |
[4] |
KOVACS A A, GOLDEN B L, HARTL R F, et al. Vehicle routing problems in which consistency considerations are important: A survey[J]. Networks, 2014, 64(3):192-213.
doi: 10.1002/net.v64.3 URL |
[5] |
SMILOWITZ K, NOWAK M, JIANG T T. Workforce management in periodic delivery operations[J]. Transportation Science, 2013, 47(2):214-230.
doi: 10.1287/trsc.1120.0407 URL |
[6] |
HAUGHTON M A. The efficacy of exclusive territory assignments to delivery vehicle drivers[J]. European Journal of Operational Research, 2008, 184(1):24-38.
doi: 10.1016/j.ejor.2006.10.014 URL |
[7] |
ZHONG H S, HALL R W, DESSOUKY M. Territory planning and vehicle dispatching with driver learning[J]. Transportation Science, 2007, 41(1):74-89.
doi: 10.1287/trsc.1060.0167 URL |
[8] |
LIU L, ANDRIS C, RATTI C. Uncovering cabdrivers’ behavior patterns from their digital traces[J]. Computers, Environment and Urban Systems, 2010, 34(6):541-548.
doi: 10.1016/j.compenvurbsys.2010.07.004 URL |
[9] | 韦增欣, 陈进来, 罗朝晖. 基于驾驶员偏好的最优路径选择[J]. 交通运输系统工程与信息, 2010, 10(6):141-144. |
WEI Zengxin, CHEN Jinlai, LUO Chaohui. Optimal path selection based on driver’s preference[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(6):141-144. | |
[10] |
PAHLAVANI P, DELAVAR M R. Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection[J]. Transportation Research Part C: Emerging Technologies, 2014, 40:14-35.
doi: 10.1016/j.trc.2014.01.001 URL |
[11] |
HE Z C, CHEN K Y, CHEN X Y. A collaborative method for route discovery using taxi drivers’ experience and preferences[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8):2505-2514.
doi: 10.1109/TITS.2017.2753468 URL |
[12] | 黄敏, 毛锋, 钱宇翔. 基于出租车司机经验的约束深度强化学习算法路径挖掘[J]. 计算机应用研究, 2020, 37(5):1298-1302. |
HUANG Min, MAO Feng, QIAN Yuxiang. Mining fastest route using taxi drivers’ experience via constrained deep reinforcement learning[J]. Application Research of Computers, 2020, 37(5):1298-1302. | |
[13] |
AHUJA R K, ORLIN J B. Combinatorial algorithms for inverse network flow problems[J]. Networks, 2002, 40(4):181-187.
doi: 10.1002/(ISSN)1097-0037 URL |
[14] |
AHUJA R K, ORLIN J B. Inverse optimization[J]. Operations Research, 2001, 49(5):771-783.
doi: 10.1287/opre.49.5.771.10607 URL |
[15] |
ZHANG J Z, LIU Z H. Calculating some inverse linear programming problems[J]. Journal of Computational and Applied Mathematics, 1996, 72(2):261-273.
doi: 10.1016/0377-0427(95)00277-4 URL |
[16] |
ZHANG J Z, LIU Z H. A general model of some inverse combinatorial optimization problems and its solution method under l∞ norm[J]. Journal of Combinatorial Optimization, 2002, 6(2):207-227.
doi: 10.1023/A:1013807829021 URL |
[17] |
HEUBERGER C. Inverse combinatorial optimization: A survey on problems, methods, and results[J]. Journal of Combinatorial Optimization, 2004, 8(3):329-361.
doi: 10.1023/B:JOCO.0000038914.26975.9b URL |
[18] |
YOU S I, CHOW J Y J, RITCHIE S G. Inverse vehicle routing for activity-based urban freight forecast modeling and city logistics[J]. Transportmetrica A: Transport Science, 2016, 12(7):650-673.
doi: 10.1080/23249935.2016.1189723 URL |
[19] | 牟健慧, 郭前建, 高亮, 等. 基于混合的多目标遗传算法的多目标流水车间逆调度问题求解方法[J]. 机械工程学报, 2016, 52(22):186-197. |
MOU Jianhui, GUO Qianjian, GAO Liang, et al. Multi-objective genetic algorithm for solving multi-objective flow-shop inverse scheduling problems[J]. Journal of Mechanical Engineering, 2016, 52(22):186-197. | |
[20] | BÄRMANN A, MARTIN A, POKUTTA S, et al. An online-learning approach to inverse optimization[DB/OL]. (2020-03-29)[2020-07-08]. https://arxiv.org/abs/1810.12997v2. |
[21] |
ASWANI A, SHEN Z J M, SIDDIQ A. Inverse optimization with noisy data[J]. Operations Research, 2018, 66(3):870-892.
doi: 10.1287/opre.2017.1705 URL |
[22] |
CHAN T C Y, LEE T, TEREKHOV D. Inverse optimization: Closed-form solutions, geometry, and goodness of fit[J]. Management Science, 2019, 65(3):1115-1135.
doi: 10.1287/mnsc.2017.2992 URL |
[23] |
SAEZ-GALLEGO J, MORALES J M. Short-term forecasting of price-responsive loads using inverse optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4805-4814.
doi: 10.1109/TSG.5165411 URL |
[24] | ARORA S, HAZAN E, KALE S. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method[C]// 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). Pittsburgh, USA: IEEE, 2005: 339-348. |
[25] |
ARORA S, HAZAN E, KALE S. The multiplicative weights update method: A meta-algorithm and applications[J]. Theory of Computing, 2012, 8(1):121-164.
doi: 10.4086/toc URL |
[1] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[2] | 倪扬帆, 杨媛媛, 谢哲, 郑德重, 王卫东. 基于LSTM与注意力结构的肺结节多特征抽取方法[J]. 上海交通大学学报, 2022, 56(8): 1078-1088. |
[3] | 王子垚, 郭凤祥, 陈俐. 基于外推高斯过程回归方法的发动机排放预测[J]. 上海交通大学学报, 2022, 56(5): 604-610. |
[4] | 郑德重, 杨媛媛, 黄浩哲, 谢哲, 李文涛. 基于距离置信度分数的多模态融合分类网络[J]. 上海交通大学学报, 2022, 56(1): 89-100. |
[5] | 袁铭, 刘群, 孙海超, 谭洪胜. 基于变分推断和元路径分解的异质网络表示方法[J]. 上海交通大学学报, 2021, 55(5): 586-597. |
[6] | 郑德重, 杨媛媛, 谢哲, 倪扬帆, 李文涛. 基于Gaussian混合的距离度量学习数据划分方法[J]. 上海交通大学学报, 2021, 55(2): 131-140. |
[7] | 魏宪,李元祥,赵海涛,庹红娅,许鹏. 基于改进ISOMAP算法的图像分类[J]. 上海交通大学学报(自然版), 2010, 44(07): 911-0915. |
[8] | 杨博, 曾春源, 陈义军, 束洪春, 曹璞璘. 极限学习机及其在质子交换膜燃料电池参数辨识中的应用(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
[9] | 张建, 胡小锋, 张亚辉. 基于自步学习的刀具加工过程监测数据异常检测方法(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||