上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (1): 70-80.doi: 10.16183/j.cnki.jsjtu.2021.167
收稿日期:
2021-05-21
出版日期:
2022-01-28
发布日期:
2022-01-21
通讯作者:
鲍劲松
E-mail:bao@dhu.edu.cn
作者简介:
沈 慧(1998-),女,安徽省铜陵市人,硕士生,主要从事数字化制造,数字孪生技术研究.
基金资助:
SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong(), ZHENG Xiaohu
Received:
2021-05-21
Online:
2022-01-28
Published:
2022-01-21
Contact:
BAO Jingsong
E-mail:bao@dhu.edu.cn
摘要:
在多品种小批量生产制造车间中,针对特定场景所建立的数字孪生模型,由于缺乏工况变化的自适应能力,导致加工质量预测精度不足.对此,提出一种数字孪生模型自适应迁移方法.通过搭建可迁移的数字孪生模型,实现机理和算法模型融合的加工质量在线预测;提出数字孪生模型迁移流程和迁移策略,基于特征数据分析计算,选择待迁移的源模型;同时,结合迁移学习理论实现简单和复杂变工况下的数字孪生模型迁移.以钻削加工为例,搭建钻削实验平台并对数字孪生模型迁移的可行性进行验证.研究结果表明,变化工况下,迁移后模型仍能保持预测误差低于1.5%.该方法为提高数字孪生模型自适应能力提供了新的思路.
中图分类号:
沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80.
SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80.
[1] | RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product: Literature review and implications in an aircraft[J]. Transdisciplinary Lifecycle Analysis of Systems, 2015: 657-666. |
[2] | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. |
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. | |
[3] |
TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9/10/11/12):3563-3576.
doi: 10.1007/s00170-017-0233-1 URL |
[4] |
LU Y Q, LIU C, WANG K I K, et al. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61:101837.
doi: 10.1016/j.rcim.2019.101837 URL |
[5] | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1):1-18. |
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18. | |
[6] |
CHENG D J, ZHANG J, HU Z T, et al. A digital twin-driven approach for on-line controlling quality of marine diesel engine critical parts[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(10):1821-1841.
doi: 10.1007/s12541-020-00403-y URL |
[7] |
ZHANG S Z, KANG C F, LIU Z F, et al. A product quality monitor model with the digital twin model and the stacked auto encoder[J]. IEEE Access, 2020, 8:113826-113836.
doi: 10.1109/Access.6287639 URL |
[8] | WANG K J, LEE Y H, ANGELICA S. Digital twin design for real-time monitoring—A case study of die cutting machine[J]. International Journal of Production Research, 2020: 1-15. |
[9] |
LIU S M, LU Y Q, LI J, et al. Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71:102123.
doi: 10.1016/j.rcim.2021.102123 URL |
[10] |
ZHENG X C, PSAROMMATIS F, PETRALI P, et al. A quality-oriented digital twin modelling method for manufacturing processes based on a multi-agent architecture[J]. Procedia Manufacturing, 2020, 51:309-315.
doi: 10.1016/j.promfg.2020.10.044 URL |
[11] | 胡富琴, 杨芸, 刘世民, 等. 航天薄壁件旋压成型数字孪生高保真建模方法[DB/OL]. (2020-12-03)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20201202006&uniplatform=NZKPT&v=l5%25mmd2FDG1c37fujR8sUdeYLf9B5r65UCl4%25mmd2Fa2zSBKWwIqELwei0ELnCptUEaWMpEu2k. |
HU Fuqin, YANG Yun, LIU Shimin, et al. Digital Twin High-fidelity Modeling Method for Spinning Forming of Aerospace Thin-walled Parts[DB/OL]. (2020-12-03)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20201202006&uniplatform=NZKPT&v=l5%25mmd2FDG1c37fujR8sUdeYLf9B5r65UCl4%25mmd2Fa2zSBKWwIqELwei0ELnCptUEaWMpEu2k. | |
[12] |
QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP, 2019, 81:1388-1393.
doi: 10.1016/j.procir.2019.04.049 URL |
[13] |
CHRISTIAND, KISWANTO G. Digital twin approach for tool wear monitoring of micro-milling[J]. Procedia CIRP, 2020, 93:1532-1537.
doi: 10.1016/j.procir.2020.03.140 URL |
[14] | 胡家文, 蒋祖华, 韩李杰. 工况时变下设备预防维护策略[J]. 上海交通大学学报, 2016, 50(5):736-741. |
HU Jiawen, JIANG Zuhua, HAN Lijie. Preventive maintenance for machine operating in dynamic environmental state[J]. Journal of Shanghai Jiao Tong University, 2016, 50(5):736-741. | |
[15] | 姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 26(9):2299-2320. |
YAO Xifan, JING Xuan, ZHANG Jianming, et al. Towards smart manufacturing for new industrial revolution[J]. Computer Integrated Manufacturing Systems, 2020, 26(09):2299-2320. | |
[16] |
WEI Y L, HU T L, ZHOU T T, et al. Consistency retention method for CNC machine tool digital twin model[J]. Journal of Manufacturing Systems, 2021, 58:313-322.
doi: 10.1016/j.jmsy.2020.06.002 URL |
[17] |
CHAKRABORTY S, ADHIKARI S. Machine learning based digital twin for dynamical systems with multiple time-scales[J]. Computers & Structures, 2021, 243:106410.
doi: 10.1016/j.compstruc.2020.106410 URL |
[18] | 孙惠斌, 潘军林, 张纪铎, 等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统, 2019, 25(6):1474-1480. |
SUN Huibin, PAN Junlin, ZHANG Jiduo, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1474-1480. | |
[19] |
ZHANG C Y, XU W J, LIU J Y, et al. A reconfigurable modeling approach for digital twin-based manufacturing system[J]. Procedia CIRP, 2019, 83:118-125.
doi: 10.1016/j.procir.2019.03.141 URL |
[20] |
ZHANG C Y, XU W J, LIU J Y, et al. Digital twin-enabled reconfigurable modeling for smart manufacturing systems[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(7/8):709-733.
doi: 10.1080/0951192X.2019.1699256 URL |
[21] |
TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12):2755-2764.
doi: 10.1016/j.cja.2019.09.001 URL |
[22] |
DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145:346-352.
doi: 10.1016/j.ijmecsci.2018.07.004 URL |
[23] | 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39. |
ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39. | |
[24] | 储成龙. 钛合金铣削表面粗糙度预测建模[D]. 南京: 南京航空航天大学, 2010. |
CHU Chenglong. Prediction modelling of surface roughness of Ti alloy milling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. | |
[25] | 许敏俊, 刘世民, 沈慧, 等. 数字孪生驱动下的弱刚性钻削毛刺控制[DB/OL]. (2021-06-18)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ2021061700C&uniplatform=NZKPT&v=EfDktvpY4SBOwwS6TS4QLlTZjbR7nWvc3en%25mmd2FMDFVvXB9vWzS2wo6b3C0cHx8SIpv. |
XU Minjun, LIU Shimin, SHEN Hui, et al. Burr control of weak rigid drilling process driven by digital twin[DB/OL].(2021-06-18)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ2021061700C&uniplatform=NZKPT&v=EfDktvpY4SBOwwS6TS4QLlTZjbR7nWvc3en%25mmd2FMDFVvXB9vWzS2wo6b3C0cHx8SIpv. | |
[26] |
DAY O, KHOSHGOFTAAR T M. A survey on heterogeneous transfer learning[J]. Journal of Big Data, 2017, 4(1):1-42.
doi: 10.1186/s40537-016-0062-3 URL |
[27] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks? [DB/OL].(2014-09-06)[2021-10-10]. https://arxiv.org/abs/1411.1792v1. |
[28] | LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[DB/OL].(2015-07-06)[2021-10-10]. https://dl.acm.org/doi/10.5555/3045118.3045130. |
[29] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL].(2014-12-10)[2021-10-10]. https://arxiv.org/abs/1412.3474. |
[1] | 王兴志, 翟海保, 严亚勤, 吴庆曦. 基于数字孪生和深度学习的新一代调控系统预调度方法[J]. 上海交通大学学报, 2021, 55(S2): 37-41. |
[2] | 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565. |
[3] | 王悦行, 吴永国, 徐传刚. 基于深度迁移学习的红外舰船目标检测算法[J]. 空天防御, 2021, 4(4): 61-66. |
[4] | 姜宇迪, 胡晖, 殷跃红. 基于无监督迁移学习的电梯制动器剩余寿命预测[J]. 上海交通大学学报, 2021, 55(11): 1408-1416. |
[5] | 刘明明,高楠,刘全东,金兴连,张旭,陈钊. 虚拟现实技术在核电厂主控制室设计中的应用及探索[J]. 上海交通大学学报, 2019, 53(Sup.1): 29-32. |
[6] | 李元,张新民. 基于非高斯信息的JITL软测量模型[J]. 上海交通大学学报(自然版), 2015, 49(06): 897-901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||