上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (5): 593-598.doi: 10.16183/j.cnki.jsjtu.2018.05.014
王军1,刘莹1,2
出版日期:
2018-05-28
发布日期:
2018-05-28
基金资助:
WANG Jun1,LIU Ying1,2
Online:
2018-05-28
Published:
2018-05-28
摘要: 为了改善血管支架材料316L不锈钢的耐腐蚀性和血液相容性,分别采用混合酸(2%HF+10%HNO3,体积分数)钝化和高温热处理钝化方法对机械抛光的316L不锈钢进行原位表面改性,通过X射线衍射仪(XRD)、原子力显微镜(AFM)和带能谱仪的扫描电子显微镜(SEM-EDS)分析改性前后316L不锈钢的表面成分和形貌,通过电化学性能测试和接触角测试来分析改性前后316L不锈钢的耐腐蚀性和润湿性.结果表明:混合酸钝化的316L不锈钢表面主要是Cr-O氧化膜,高温热处理钝化的316L不锈钢表面为Fe2O3与Cr-O混合物氧化膜,均起到了改善316L不锈钢在模拟人体体液环境中的耐腐蚀性的作用;2种方法改性后的316L不锈钢表面均呈亲水性,且使得316L不锈钢表面能的极化分量增加,材料与血液间界面张力减小,均可作为生物医用材料使用,并能够改善316L不锈钢的耐腐蚀性和血液相容性.
中图分类号:
王军1,刘莹1,2. 316L不锈钢钝化膜的耐腐蚀性和血液相容性[J]. 上海交通大学学报(自然版), 2018, 52(5): 593-598.
WANG Jun1,LIU Ying1,2. Corrosion Resistance and Hemocompatibility of Passivated 316L Stainless Steel[J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 593-598.
[1]POURHASHEM S, AFSHAR A. Double layer bioglass-silica coatings on 316L stainless steel by sol-gel method[J]. Ceramics International, 2014, 40(1): 993-1000. [2]TALHA M, KUMAR S, BEHERA C K, et al. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton’s Lymphoma cell line[J]. Materials Science and Engineering C: Materials for Biological Applications, 2014, 35(10): 77-84. [3]KIM M S, DEAN L S. In-stent restenosis[J]. Cardiovascular Therapeutics, 2011, 29(3): 190-198. [4]SIMSEK Z, KOZA Y, TAS M H, et al. Two cases of very late bare-metal stent thrombosis and literature review[J]. European Review for Medical and Pharmacological Sciences, 2014, 18(11): 1674-1677. [5]CHEN Q, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering R: Reports, 2015, 87(1): 1-57. [6]KOPPARA T, SAKAKURA K, PACHECO E, et al. Preclinical evaluation of a novel polyphosphazene surface modified stent[J]. International Journal of Cardiology, 2016, 222: 217-225. [7]FU T, WEN C S, LU J, et al. Sol-gel derived TiO2 coating on plasma nitrided 316L stainless steel[J]. Vacuum, 2012, 86(9): 1402-1407. [8]HUANG Q, YANG Y, HU R, et al. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel[J]. Colloids and Surfaces B: Biointerfaces, 2015, 125: 134-141. [9]MOHAN C C, CHERIAN A M, KURUP S, et al. Stable titania nanostructures on stainless steel coronary stent surface for enhanced corrosion resistance and endothelialization[J]. Advanced Healthcare Materials, 2017, 6(11): 1601353. [10]刘莹, 刘小龙, 王军, 等. 溶胶-凝胶法制备ZrO2薄膜及其耐腐蚀性与血液相容性研究[J]. 功能材料, 2014, 45(14): 14061-14065. LIU Ying, LIU Xiaolong, WANG Jun, et al. Corrosion resistance and hemocompatibility of zirconium oxide thin films prepared by sol-gel dip coating method[J]. Journal of Functional Materials, 2014, 45(14): 14061-14065. [11]马春阳, 朱永永, 吴飞飞, 等. 316L不锈钢支架表面EVAL涂层的制备及性能研究[J]. 功能材料, 2014, 45(13): 13056-13058. MA Chunyang, ZHU Yongyong, WU Feifei, et al. Preparation and performance of ethylene-vinyl alcohol copolymer coatings on 316L stainless steel stent[J]. Journal of Functional Materials, 2014, 45(13): 13056-13058. [12]MUTHUKUMARAN V, SELLADURAI V, NANDHAKUMAR S, et al. Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel[J]. Material Design, 2010, 31(6): 2813-2817. [13]GAO L, ZHOU W, WANG Y, et al. Fabrication of hydrophobic structures on stent by direct three-beam laser interference lithography[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(13): 5211-5214. [14]SHIH C C, SHIH C M, CHOU K Y. Stability of passivated 316L stainless steel oxide films for cardiovascular stents[J]. Journal of Biomedical Materials Research Part A, 2007, 80(4): 861-873. [15]BEIJK M A M, KLOMP M, VEROUDEN N J W, et al. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: A randomized, single-center, pilot study[J]. European Heart Journal, 2010, 31(9): 1055-1064. [16]HUANF N, YANG P, LENG Y X, et al. Hemocompatibility of titanium oxide films[J]. Biomaterials, 2003, 24(13): 2177-2187. [17]DING M H, WANG B L, LI L, et al. Preparation and characterization of TaCxN1-x coatings on biome-dical 316L stainless steel[J]. Surface and Coatings Technology, 2010, 204 (16/17): 2519-2526. [18]WANG L, ZHAO X, DING M H, et al. Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings[J]. Applied Surface Science, 2015, 340: 113-119. |
[1] | 姜勇,李洋,周阳,巩建鸣. 奥氏体不锈钢双极板的低温超饱和气体渗碳表面改性[J]. 上海交通大学学报(自然版), 2019, 53(2): 247-252. |
[2] | 谢鹏, 刘昊, 杨清书. 脐带缆超双相不锈钢管的受力分析[J]. 海洋工程装备与技术, 2018, 5(增刊): 60-64. |
[3] | 刘贵吉, 甘志云, 李江, 王旭, 张洪飞. 超声相控阵检测技术在奥氏体不锈钢[J]. 海洋工程装备与技术, 2018, 5(增刊): 248-252. |
[4] | 陶平1,2,王艳飞3,巩建鸣1,2,吴炜杰1,2,梁涛1,2. 氢在双相不锈钢中的扩散模拟[J]. 上海交通大学学报(自然版), 2018, 52(9): 1086-1091. |
[5] | 冯巧波1,2,李永兵1,楼铭1,来新民1. 430铁素体不锈钢电阻点焊工艺性能[J]. 上海交通大学学报(自然版), 2018, 52(12): 1649-1654. |
[6] | 柳军, 符翔, 王晓燕. 一种半径可控的参数化三维前缘钝化设计方法研究[J]. 空天防御, 2018, 1(1): 18-24. |
[7] | 赖睿,蔡艳,吴岳,华学明. 光束焦点位置对双相不锈钢光纤激光#br# 焊接焊缝成形和组织的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 418-. |
[8] | 段振刚1,杜东海1,张乐福1,孟凡江2,石秀强2. 304和316L不锈钢的高温电化学腐蚀行为[J]. 上海交通大学学报(自然版), 2016, 50(02): 215-221. |
[9] | 杜丰泰. 液化天然气管道工程中所用低温钢的焊接性[J]. 海洋工程装备与技术, 2014, 1(2): 166-173. |
[10] | 杜东海1,陆辉1,陈凯1,张乐福1,石秀强2,徐雪莲2. 溶解氧对高温水中冷变形316L应力腐蚀开裂的影响规律[J]. 上海交通大学学报(自然版), 2014, 48(11): 1644-1649. |
[11] | 潘向烽1,段振刚1,张乐福1,王力1,徐雪莲2,石秀强2. 锌对316L奥氏体不锈钢氧化膜影响的XPS分析[J]. 上海交通大学学报(自然版), 2014, 48(03): 417-421. |
[12] | 董菲1,Guenel Germain2,Jean Lou Lebrun2,李铸国1. 有限元分析法确定JohsonCook本构方程材料参数[J]. 上海交通大学学报(自然版), 2011, 45(11): 1657-1660. |
[13] | 林舒,江来珠,张柯,张志霞,戎咏华. Ti和Nb对18Cr-2Mo铁素体不锈钢韧脆转变温度的影响[J]. 上海交通大学学报(自然版), 2010, 44(05): 598-0603. |
[14] | 刘斌,张普亮,王金清,张东,周金芳,杨生荣. AZ91D镁合金在不同电解液体系中的微弧氧化行为[J]. 上海交通大学学报(自然版), 2010, 44(01): 16-0024. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1631
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||