[1]郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11): 119-134.
GUO Dongming, SUN Yuwen, JIA Zhenyuan. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11): 119-134.
[2]王兵, 刘战强. 材料动态性能对高速切削切屑形成的影响规律[J]. 中国科学: 技术科学, 2016, 46(1): 1-19.
WANG Bing, LIU Zhanqiang. Effect of material dynamic properties on the chip formation mechanism during high speed machining[J].Scientia Sinica Technologica, 2016, 46(1): 1-19.
[3]HAO Z P, JI F F, FAN Y, et al. Flow characteristics and constitutive equations of flow stress in high speed cutting alloy 718[J]. Journal of Alloys and Compounds, 2017, 728(25): 854-862.
[4]BRINKSMEIER E, PREUSS W, RIEMER O, et al. Cutting forces, tool wear and surface finish in high speed diamond machining[J]. Precision Engineering, 2017, 49: 293-304.
[5]BINDER M, KLOCKE F, DOEBBELER B. An advanced numerical approach on tool wear simulation for tool and process design in metal cutting[J]. Simulation Modelling Practice and Theory, 2017, 70: 65-82.
[6]ZHOU T F, WU J J, CHE J T, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2017, 109: 167-177.
[7]TIAMIYU A A, BASU R, ODESHI A G, et al. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading[J]. Materials Science and Engineering A, 2015, 636: 379-388.
[8]毛萍莉, 于金程, 刘正, 等. 挤压态Mg-Gd-Y镁合金动态压缩力学性能与失效行为[J]. 中国有色金属学报, 2013, 23(4): 889-897.
MAO Pingli, YU Jincheng, LIU Zheng, et al. Dynamic mechanical property and failure behavior of extruded Mg-Gd-Y alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 889-897.
[9]BOLDYREV I S, SHCHUROV I A. FEM thermo-mechanical simulation of the free orthogonal cutting and temperature distribution in tool and workpiece[J]. Procedia Engineering, 2017, 206: 1133-1136.
[10]王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25(1): 17-25.
WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25(1): 17-25.
[11]LI Y, GUO Y, HU H, et al. A critical assessment of high-temperature dynamic mechanical testing of metals[J]. International Journal of Impact Engineering, 2009, 36(2): 177-184.
[12]赵征志, 佟婷婷, 赵爱民, 等. 1300MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
ZHAO Zhengzhi, TONG Tingting, ZHAO Aimin, et al. Microstructure, mechanical properties and work hardening behavior of 1 300 MPa grade 0.14C-2.72Mn-1.3Si steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1153-1162.
[13]STRICKER M, WEYGAND D. Dislocation multiplication mechanisms—Glissile junctions and their role on the plastic deformation at the microscale[J]. Acta Materialia, 2015, 99(15): 130-139.
[14]JOHNSON G R, COOK W H. A constitutive model and data for metal subjected to large strain, high strain rates and high temperatures[C]∥Processing of the Seventh International Symposium on Ballistics, Hague, Netherlands: [s.n.], 1983: 541-547.
[15]俞建超, 姜峰, 融亦鸣. AISI D2钢力学性能尺寸效应实验研究[J]. 材料科学与工艺, 2012, 20(3): 83-88.
YU Jianchao, JIANG Feng, RONG Yiming. Experimental research on mechanical property size effects of AISI D2 steel[J]. Materials Science and Technology, 2012, 20(3): 83-88.
[16]LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4): 1733-1759. |