上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (5): 587-592.doi: 10.16183/j.cnki.jsjtu.2018.05.013
俞建超,林有希
出版日期:
2018-05-28
发布日期:
2018-05-28
基金资助:
YU Jianchao,LIN Youxi
Online:
2018-05-28
Published:
2018-05-28
摘要: 通过对高速加工中无氧铜工件材料在温度为20~900℃,应变率为1.0×103~1.5×104s-1的条件下,进行霍普金森压杆试验,获得反映材料动态力学性能的真应力-真应变曲线.结果表明:无氧铜的力学性能表现出对应变率和温度的敏感性较强,其流动应力随着应变率的提高而显著增加,而且变形温度的升高使得流动应力明显下降;采用经验型Johnson-Cook本构模型预测无氧铜的动态力学性能的误差较大;在动态力学性能分析的基础上,采用修正的Johnson-Cook本构模型能够较好地预测试验结果,可用于高速加工中无氧铜的动态力学性能模拟分析.
中图分类号:
俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592.
YU Jianchao,LIN Youxi. Oxygen Free Copper Dynamic Mechanical Property in High Speed Machining Process[J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 587-592.
[1]郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11): 119-134. GUO Dongming, SUN Yuwen, JIA Zhenyuan. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11): 119-134. [2]王兵, 刘战强. 材料动态性能对高速切削切屑形成的影响规律[J]. 中国科学: 技术科学, 2016, 46(1): 1-19. WANG Bing, LIU Zhanqiang. Effect of material dynamic properties on the chip formation mechanism during high speed machining[J].Scientia Sinica Technologica, 2016, 46(1): 1-19. [3]HAO Z P, JI F F, FAN Y, et al. Flow characteristics and constitutive equations of flow stress in high speed cutting alloy 718[J]. Journal of Alloys and Compounds, 2017, 728(25): 854-862. [4]BRINKSMEIER E, PREUSS W, RIEMER O, et al. Cutting forces, tool wear and surface finish in high speed diamond machining[J]. Precision Engineering, 2017, 49: 293-304. [5]BINDER M, KLOCKE F, DOEBBELER B. An advanced numerical approach on tool wear simulation for tool and process design in metal cutting[J]. Simulation Modelling Practice and Theory, 2017, 70: 65-82. [6]ZHOU T F, WU J J, CHE J T, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2017, 109: 167-177. [7]TIAMIYU A A, BASU R, ODESHI A G, et al. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading[J]. Materials Science and Engineering A, 2015, 636: 379-388. [8]毛萍莉, 于金程, 刘正, 等. 挤压态Mg-Gd-Y镁合金动态压缩力学性能与失效行为[J]. 中国有色金属学报, 2013, 23(4): 889-897. MAO Pingli, YU Jincheng, LIU Zheng, et al. Dynamic mechanical property and failure behavior of extruded Mg-Gd-Y alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 889-897. [9]BOLDYREV I S, SHCHUROV I A. FEM thermo-mechanical simulation of the free orthogonal cutting and temperature distribution in tool and workpiece[J]. Procedia Engineering, 2017, 206: 1133-1136. [10]王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25(1): 17-25. WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25(1): 17-25. [11]LI Y, GUO Y, HU H, et al. A critical assessment of high-temperature dynamic mechanical testing of metals[J]. International Journal of Impact Engineering, 2009, 36(2): 177-184. [12]赵征志, 佟婷婷, 赵爱民, 等. 1300MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162. ZHAO Zhengzhi, TONG Tingting, ZHAO Aimin, et al. Microstructure, mechanical properties and work hardening behavior of 1 300 MPa grade 0.14C-2.72Mn-1.3Si steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1153-1162. [13]STRICKER M, WEYGAND D. Dislocation multiplication mechanisms—Glissile junctions and their role on the plastic deformation at the microscale[J]. Acta Materialia, 2015, 99(15): 130-139. [14]JOHNSON G R, COOK W H. A constitutive model and data for metal subjected to large strain, high strain rates and high temperatures[C]∥Processing of the Seventh International Symposium on Ballistics, Hague, Netherlands: [s.n.], 1983: 541-547. [15]俞建超, 姜峰, 融亦鸣. AISI D2钢力学性能尺寸效应实验研究[J]. 材料科学与工艺, 2012, 20(3): 83-88. YU Jianchao, JIANG Feng, RONG Yiming. Experimental research on mechanical property size effects of AISI D2 steel[J]. Materials Science and Technology, 2012, 20(3): 83-88. [16]LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4): 1733-1759. |
[1] | 赵洪, 谢友均, 龙广成, 李宁, 张嘉伟, 程智清. 冲击荷载作用下含黏结界面混凝土破坏特征与应力应变分析[J]. 上海交通大学学报, 2022, 56(9): 1208-1217. |
[2] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[3] | 张硕,叶冠林,甄亮,李明广,陈超斌. 考虑小应变下刚度衰减特征的软土本构模型[J]. 上海交通大学学报, 2019, 53(5): 535-539. |
[4] | 王立冬1,魏冉2,徐鹏2,赵科新2,彭雄奇1. 基于温度的隔膜超弹性本构模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1025-1030. |
[5] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
[6] | 阎昱,王海波,赵溦. 与应变速率相关的DP980高强度钢板辊弯成形的本构模型建立[J]. 上海交通大学学报(自然版), 2015, 49(01): 7-11. |
[7] | 陈鸣1,彭雄奇1,石少卿2,杨华正3. 薄膜超弹性本构模型及其在空气垫中的应用[J]. 上海交通大学学报(自然版), 2014, 48(06): 883-887. |
[8] | 只悦胜,胡成亮,赵震,李世龙. 20CrMnTiH本构模型的建立及验证[J]. 上海交通大学学报(自然版), 2013, 47(11): 1697-1701. |
[9] | 尹冀,朱平,章斯亮. 考虑应变率效应的钢制车轮冲击仿真与试验[J]. 上海交通大学学报(自然版), 2013, 47(06): 967-971. |
[10] | 林蔚, 颜国正. 驻留-伸缩式胃肠道微型机器人的临界步距模型与实验分析[J]. 上海交通大学学报(自然版), 2013, 47(04): 656-662. |
[11] | 鲁佳宝, 赵社戌. PC/ABS高分子合金材料的热黏塑性内时本构模型[J]. 上海交通大学学报(自然版), 2011, 45(10): 1465-1468. |
[12] | 牛建辉,朱平,郭永进. 热镀锌双相钢DP590力学特性及其本构模型 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1382-1387. |
[13] | 魏志刚,汤文成,严斌,杨宝宽. 基于次弹性模型的三维牙周膜建模仿真研究 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1125-1129. |
[14] | 马秋,于爽,苏旭明,于忠奇. 热塑性聚烯烃大变形行为建模及数值模拟 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1155-1158. |
[15] | 金朝阳,崔振山. 低碳钢热塑性成形过程本构模型[J]. 上海交通大学学报(自然版), 2010, 44(04): 437-0441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||