[1]POURHASHEM S, AFSHAR A. Double layer bioglass-silica coatings on 316L stainless steel by sol-gel method[J]. Ceramics International, 2014, 40(1): 993-1000.
[2]TALHA M, KUMAR S, BEHERA C K, et al. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton’s Lymphoma cell line[J]. Materials Science and Engineering C: Materials for Biological Applications, 2014, 35(10): 77-84.
[3]KIM M S, DEAN L S. In-stent restenosis[J]. Cardiovascular Therapeutics, 2011, 29(3): 190-198.
[4]SIMSEK Z, KOZA Y, TAS M H, et al. Two cases of very late bare-metal stent thrombosis and literature review[J]. European Review for Medical and Pharmacological Sciences, 2014, 18(11): 1674-1677.
[5]CHEN Q, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering R: Reports, 2015, 87(1): 1-57.
[6]KOPPARA T, SAKAKURA K, PACHECO E, et al. Preclinical evaluation of a novel polyphosphazene surface modified stent[J]. International Journal of Cardiology, 2016, 222: 217-225.
[7]FU T, WEN C S, LU J, et al. Sol-gel derived TiO2 coating on plasma nitrided 316L stainless steel[J]. Vacuum, 2012, 86(9): 1402-1407.
[8]HUANG Q, YANG Y, HU R, et al. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel[J]. Colloids and Surfaces B: Biointerfaces, 2015, 125: 134-141.
[9]MOHAN C C, CHERIAN A M, KURUP S, et al. Stable titania nanostructures on stainless steel coronary stent surface for enhanced corrosion resistance and endothelialization[J]. Advanced Healthcare Materials, 2017, 6(11): 1601353.
[10]刘莹, 刘小龙, 王军, 等. 溶胶-凝胶法制备ZrO2薄膜及其耐腐蚀性与血液相容性研究[J]. 功能材料, 2014, 45(14): 14061-14065.
LIU Ying, LIU Xiaolong, WANG Jun, et al. Corrosion resistance and hemocompatibility of zirconium oxide thin films prepared by sol-gel dip coating method[J]. Journal of Functional Materials, 2014, 45(14): 14061-14065.
[11]马春阳, 朱永永, 吴飞飞, 等. 316L不锈钢支架表面EVAL涂层的制备及性能研究[J]. 功能材料, 2014, 45(13): 13056-13058.
MA Chunyang, ZHU Yongyong, WU Feifei, et al. Preparation and performance of ethylene-vinyl alcohol copolymer coatings on 316L stainless steel stent[J]. Journal of Functional Materials, 2014, 45(13): 13056-13058.
[12]MUTHUKUMARAN V, SELLADURAI V, NANDHAKUMAR S, et al. Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel[J]. Material Design, 2010, 31(6): 2813-2817.
[13]GAO L, ZHOU W, WANG Y, et al. Fabrication of hydrophobic structures on stent by direct three-beam laser interference lithography[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(13): 5211-5214.
[14]SHIH C C, SHIH C M, CHOU K Y. Stability of passivated 316L stainless steel oxide films for cardiovascular stents[J]. Journal of Biomedical Materials Research Part A, 2007, 80(4): 861-873.
[15]BEIJK M A M, KLOMP M, VEROUDEN N J W, et al. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: A randomized, single-center, pilot study[J]. European Heart Journal, 2010, 31(9): 1055-1064.
[16]HUANF N, YANG P, LENG Y X, et al. Hemocompatibility of titanium oxide films[J]. Biomaterials, 2003, 24(13): 2177-2187.
[17]DING M H, WANG B L, LI L, et al. Preparation and characterization of TaCxN1-x coatings on biome-dical 316L stainless steel[J]. Surface and Coatings Technology, 2010, 204 (16/17): 2519-2526.
[18]WANG L, ZHAO X, DING M H, et al. Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings[J]. Applied Surface Science, 2015, 340: 113-119. |