上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (9): 1086-1091.doi: 10.16183/j.cnki.jsjtu.2018.09.012
陶平1,2,王艳飞3,巩建鸣1,2,吴炜杰1,2,梁涛1,2
发布日期:
2025-07-02
通讯作者:
巩建鸣,男,教授,博士生导师,电话(Tel.): 025-58139361; E-mail: gongjm@njut.edu.cn.
作者简介:
陶平(1991-),男,江苏省泰州市人,博士生,目前主要从事应力诱导下不锈钢的氢致开裂研究.
基金资助:
TAO Ping,WANG Yanfei,GONG Jianming,WU Weijie,LIANG Tao
Published:
2025-07-02
摘要: 利用Abaqus有限元软件建立了氢在含不同奥氏体相体积分数(φγ)双相不锈钢中的二维扩散有限元模型,分析了φγ对氢在双相不锈钢中扩散分布的影响,计算了氢在含不同φγ的模型中的表观扩散系数(Dapp),建立了Dapp与φγ的关系式.结果表明:氢在双相不锈钢中的Dapp随着φγ的增加而降低,并且ln Dapp与φγ之间呈现出线性变化关系;将φγ=44.3%, 50.0%, 57.3% 的3种模型中的奥氏体相沿扩散深度方向延长,以分析氢沿着双相不锈钢横向和纵向组织中的扩散差异.结果表明,氢在纵向组织中的扩散速度更小,氢脆敏感性更弱.
中图分类号:
陶平1,2,王艳飞3,巩建鸣1,2,吴炜杰1,2,梁涛1,2. 氢在双相不锈钢中的扩散模拟[J]. 上海交通大学学报, 2018, 52(9): 1086-1091.
TAO Ping,WANG Yanfei,GONG Jianming,WU Weijie,LIANG Tao. Simulation of Hydrogen Diffusion in Duplex Stainless Steel[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1086-1091.
[1]VAOVP, SOJKA J. Hydrogen embrittlement of duplex steel tested using slow strain rate test[J]. Metalurgija, 2014, 53(2): 163-166. [2]SRLVERSTEIN R, DAN E, GLAM B, et al. Influence of hydrogen on microstructure and dynamic strength of lean duplex stainless steel[J]. Journal of Materials Science, 2014, 49(11): 4025-4031. [3]SILVA B R S D, SALVIO F, SANTOS D S D. Hydrogen induced stress cracking in UNS S32750 super duplex stainless steel tube weld joint[J]. International Journal of Hydrogen Energy, 2015, 40(47): 17091-17101. [4]SILVERSTEIN R, ELIEZER D. Hydrogen trapping mechanism of different duplex stainless steels alloys[J]. Journal of Alloys and Compounds, 2015, 644: 280-286. [5]褚武扬. 氢脆和应力腐蚀[M]. 北京: 科学出版社, 2013. CHU Wuyang. Hydrogen embrittlement and stress corrosion cracking[M]. Beijing: Science Press, 2013. [6]TURNBULL A, BEYLEGAARD E L, HUTCHINGS R B. Hydrogen transport in SAF 2205 and SAF 2507 duplex stainless steels[C]∥Hydrogen Transport and Cracking in Metals. London: Institute of Materials, 1995, 605: 268-279. [7]OWCZAREK E, ZAKROCZYMSKI T. Hydrogen transport in a duplex stainless steel[J]. Acta Materialia, 2000, 48(12): 3059-3070. [8]ZAKROCZYMSKI T, OWCZAREK E. Electrochemical investigation of hydrogen absorption in a duplex stainless steel[J]. Acta Materialia, 2002, 50(10): 2701-2713. [9]MENTE T, BOELLINGHAUS T. Mesoscale modeling of hydrogen-assisted cracking in duplex stainless steels[J]. Welding in the World, 2014, 58(2): 205-216. [10]OLDEN V, SAAI A, JOHNSEN R, et al. FE simulation of hydrogen diffusion in duplex stainless steel[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1156-1163. [11]WAGENBLAST H, WRIEDT H A. Dilation of alpha iron by dissolved hydrogen at 450℃ to 800℃[J]. Metallurgical and Materials Transactions B, 1971, 2(5): 1393-1397. [12]MINE Y, NARAZAKI C, MURAKAMI K, et al. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth[J]. International Journal of Hydrogen Energy, 2009, 34(2): 1097-1107. [13]OLDEN V, THAULOW C, JOHNSEN R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design, 2008, 29(10): 1934-1948. [14]CHOU S L, TSAI W T. Effect of grain size on the hydrogen-assisted cracking in duplex stainless steels[J]. Materials Science and Engineering A, 1999, 270(2): 219-224. [15]何建宏, 唐祥云, 陈南平. 氢在(α+γ)双相不锈钢中的扩散[J]. 金属学报, 1989, 25(1): 37-41. HE Jianhong, TANG Xiangyun, CHEN Nanping. Diffusion of hydrogen in (α+γ) duplex stainless steel[J]. Acta Metallurgica Sinica, 1989, 25(1): 37-41. [16]GESNOUIN C, HAZARABEDIAN A, BRUZZONI P, et al. Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels[J]. Corrosion Science, 2004, 46(7): 1633-1647. [17]SHARRFEDDIN A, MUSA S M, ELSHAWESH F M. Role of structural orientation on the susceptibility of 2205 duplex stainless steel to hydrogen embrittlement[C]∥International Congress on Advances in Applied Physics and Materials. New York, USA: Ame-rican Institute of Physics, 2012, 1476: 199-203. |
[1] | 陈清华, 吴佳乐, 陆育, 季家东, 刘萍. 基于组合边界条件的固体材料热扩散系数测试方法[J]. 上海交通大学学报, 2024, 58(8): 1201-1210. |
[2] | 李洋, 刘志, 宰学荣, 黄翔, 陈岩, 曹亚俐, 张怀静, 付玉彬. 海泥孔隙率对海底微生物燃料电池电化学性能影响及有机质扩散分析[J]. 上海交通大学学报, 2024, 58(10): 1567-1574. |
[3] | 尹智成, 王平, 姜霖松, 孙颖, 何祖强. 简单立方堆积床内火焰特性的试验研究[J]. 上海交通大学学报, 2023, 57(3): 326-334. |
[4] | 刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255. |
[5] | 胡亚元,王超. 双应力变量的饱和介质非线性体积本构关系[J]. 上海交通大学学报, 2019, 53(7): 797-804. |
[6] | 谢鹏, 刘昊, 杨清书. 脐带缆超双相不锈钢管的受力分析[J]. 海洋工程装备与技术, 2018, 5(增刊): 60-64. |
[7] | 赖睿,蔡艳,吴岳,华学明. 光束焦点位置对双相不锈钢光纤激光#br# 焊接焊缝成形和组织的影响[J]. 上海交通大学学报, 2017, 51(4): 418-. |
[8] | 沈超, 曾志刚, 沈斌杰, 胡志宇. 一维热波法测量薄膜纵向热扩散系数 [J]. 上海交通大学学报(自然版), 2012, 46(07): 1159-1162. |
[9] | 梁修锋,杨建民,李俊,李欣. 自由运动船体迎浪状态下上浪问题的数值模拟[J]. 上海交通大学学报(自然版), 2010, 44(06): 763-0768. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 53
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||