[1] |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414: 345-352.
|
[2] |
ASRI N F, HUSAINI T, SULONG A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9135-9148.
|
[3] |
SILVA R F, POZIO A. Corrosion study on different types of metallic bipolar plates for polymer electrolyte membrane fuel cells[J]. Journal of Fuel Cell Science and Technology, 2007, 4(2): 116-122.
|
[4] |
AYERS K E, CAPUANO C, ANDERSON E B. Recent advances in cell cost and efficiency for PEM-based water electrolysis[C]//ECS Transactions. Boston, USA: ECS, 2012, 41(10): 15-22.
|
[5] |
LEE S H, KAKATI N, MAITI J, et al. Corrosion and electrical properties of CrN-and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells[J]. Thin Solid Films, 2013, 529: 374-379.
|
[6] |
YANG G, MO J, KANG Z, et al. Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14734-14740.
|
[7] |
荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12): 1516-1522.
|
|
RONG Dongsong, JIANG Yong, GONG Jianming. Experimental research and thermodynamic simulation of low temperature colossal carburization of austenitic stainless steel[J]. Acta Metallurgica Sinica, 2015, 51(12): 1516-1522.
|
[8] |
TRIWIYANTO A, HUSAIN P, HARUMAN E, et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance[EB/OL].[2017-07-20].http://www.doc88.com/p-274339490502.html.
|
[9] |
HOEFT D, LATELLA B A, SHORT K T. Residual stress and cracking in expanded austenite layers[J]. Journal of Physics: Condensed Matter, 2005, 17(23): 3547-3558.
|
[10] |
荣冬松, 巩建鸣, 姜勇, 等. 奥氏体金属低温超饱和气体渗碳表面强化试验装置: CN103323355A [P]. 2013-09-05[2017-02-09].
|
|
RONG Dongsong, GONG Jianming, JIANG Yong, et al. Test device for austenitic metal low temperature supersaturated gas carburizing surface strengthening: CN103323355A [P]. 2013-09-05[2017-02-09].
|
[11] |
周上祺. X射线衍射分析原理、方法、应用[M]. 重庆: 重庆大学出版社, 1991.
|
|
ZHOU Shangqi. X ray diffraction analysis principle, method and application [M]. Chongqing: Chongqing University Press, 1991.
|
[12] |
AVASARALA B, HALDAR P. Effect of surface roughness of composite bipolar plates on the contact resistance of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 188(1): 225-229.
|
[13] |
PENG Y W, GONG J M, JIANG Y, et al. The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel[J]. Surface and Coatings Technology, 2016, 304: 16-22.
|
[14] |
DAVIES D P, ADCOCK P L, TURPIN M, et al. Bipolar plate materials for solid polymer fuel cells[J]. Journal of Applied Electrochemistry, 2000, 30(1): 101-105.
|
[15] |
HEUER A H, KAHN H, NATISHAN P M, et al. Electrostrictive stresses and breakdown of thin passive films on stainless steel[J]. Electrochimica Acta, 2011, 58: 157-160.
|
[16] |
HEUER A H, KAHN H, ERNST F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: Implications of a critical passive layer thickness for breakdown[J]. Acta Materialia, 2012, 60(2): 716-725.
|