上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (10): 1280-1291.doi: 10.16183/j.cnki.jsjtu.2018.10.017

• 学报(中文) • 上一篇    下一篇

半监督学习理论及其研究进展概述

屠恩美,杨杰   

  1. 上海交通大学 电子信息与电气工程学院, 上海 200240
  • 通讯作者: 杨杰,男,教授,博士生导师,电话(Tel.): 021-34204033;E-mail:jieyang@sjtu.edu.cn.
  • 作者简介:屠恩美(1983-),男,安徽省霍邱县人,助理教授,主要从事半监督机器学习研究.
  • 基金资助:
    国家自然科学基金资助项目(61572315,61806125),国家重点基础研究发展计划资助项目(2015CB856004)

A Review of Semi-Supervised Learning Theories and Recent Advances

TU Enmei,YANG Jie   

  1. School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

摘要: 半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问题.半监督学习已在许多领域被成功应用.回顾了半监督学习的发展历程和主要理论,并介绍了半监督学习研究的最新进展,最后结合应用实例分析了半监督学习在解决实际问题中的重要作用.

关键词: 机器学习, 半监督学习, 图的拉普拉斯矩阵

Abstract: Semi-supervised learning, which has emerged from the beginning of this century, is a new type of learning method between traditional supervised learning and unsupervised learning. The main idea of semi-supervised learning is to introduce unlabeled samples into model training process to avoid performance (or model) degeneration due to insufficiency of labeled samples. Semi-supervised learning has been applied sucessfully in many fields. This paper reviews the development process and main theories of semi-supervised learning, as well as its recent advances and importance in solving real-world problems demonstrated by typical application examples.

Key words: machine learning, semi-supervised learning, graph Laplacian

中图分类号: