上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (10): 1273-1279.doi: 10.16183/j.cnki.jsjtu.2018.10.016
王军锋,刘兴钊
发布日期:
2025-07-02
作者简介:
王军锋(1971-),男,河南省平顶山市人,教授,主要研究方向为雷达信号处理.E-mail: junfengwang@sjtu.edu.cn.
刘兴钊(1962-),男,湖北省武汉市人,教授,主要研究方向为雷达信号处理.E-mail: xzhliu@sjtu.edu.cn.
WANG Junfeng,LIU Xingzhao
Published:
2025-07-02
摘要: 由于在军事侦察和民事搜索中的巨大潜力,合成孔径雷达的运动目标检测技术一直备受关注.从单通道合成孔径雷达的运动目标检测、多通道合成孔径雷达的运动目标检测以及合成孔径雷达的运动目标速度估计三个方面出发,系统回顾了该领域中现有的思想和方法,并简单介绍了本课题组近期在该领域所取得的重要进展.
中图分类号:
王军锋,刘兴钊. 合成孔径雷达运动目标检测的研究进展[J]. 上海交通大学学报, 2018, 52(10): 1273-1279.
WANG Junfeng,LIU Xingzhao. Development in SAR Moving-Target Detection[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1273-1279.
[1]RANEY R K. Synthetic aperture imaging radar and moving targets [J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(3): 499-505. [2]CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar: Systems and signal processing [M]. New York, NY: John Wiley & Sons, 1991. [3]BAMLER R. Doppler frequency estimation and the Cramer-Rao bound [J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3): 385-390. [4]CUMMING I G, WONG F H. Digital processing of synthetic aperture radar data: Algorithms and implementation [M]. Norwood, MA: Artech House, 2005. [5]HERLAND E A. Some SAR processing results using autofocusing [C]//Seasat-SAR Workshop. Frascati, Italy: [s. n.], 1980: 19-22. [6]WANG J, LIU X. SAR minimum-entropy autofocus using an adaptive-order polynomial model [J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 512-516. [7]FIENUP J R. Phase error correction by shear averaging [C]//Signal Recovery and Synthesis III Topical Meeting. Falmouth, MA, USA: OSA, 1989: 134-137. [8]FIENUP J R. Detecting moving targets in SAR imagery by focusing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794-809. [9]BARBAROSSA S, FARINA A. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution [C]//IEEE International Conference on Radar. Arlington, VA, USA: IEEE, 1990: 44-50. [10]EICHEL P H, GHIGLIA D C, JAKOWATZ C V. Speckle processing method for synthetic aperture radar phase correction [J]. Optics Letters, 1989, 14(1): 1-3. [11]WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus—A robust tool for high re-solution SAR phase correction [J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835. [12]LV G, WANG J, LIU X. Ground moving target indication in SAR images by symmetric defocusing [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 241-245. [13]DIAS J M B, MARQUES P A C. Multiple moving target detection and trajectory estimation using a single SAR sensor [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 604-624. [14]KIRSCHT M. Detection and velocity estimation of moving objects in a sequence of single-look SAR images [C]//International Geoscience and Remote Sensing Symposium. Lincoln, NE, USA: IEEE, 1996: 333-335. [15]KIRSCHT M. Detection and imaging of arbitrarily moving targets with single-channel SAR [J]. IEE Proceedings-Radar, Sonar, and Navigation, 2003, 150(1): 7-11. [16]唐肖剑, 张春荣, 郝小宁, 等. 基于对比度滤波的SAR动目标检测方法[C]//中国合成孔径雷达会议. 南京: 电子工业出版社, 2005: 223-226. TANG Xiaojian, ZHANG Chunrong, HAO Xiao-ning, et al. SAR moving target detection method based on contrast filtering[C]//China SAR Conference. Nanjing, China: Publishing House of Electronics Industry, 2005: 223-226. [17]ZHAN T, WANG J, LIU X, et al. Ground moving target indication in SAR images based on local 2-look similarity [C]//IEEE International Geoscience and Remote Sensing Symposium. Melbourne, Australia: IEEE, 2013: 1344-1347. [18]WANG J. SAR moving-target detection using difference between two looks [C]//IEEE International Conference on Signal Processing, Communications and Computing. Ningbo, China: IEEE, 2015: 1-5. [19]GOLDSTEIN R M, ZEBKER H A. Interferometric radar measurement of ocean surface currents [J]. Nature, 1987, 328: 707-709. [20]MEYER F, HINZ S, LAIKA A, et al. Performance analysis of the TerraSAR-X traffic monitoring concept [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(3/4): 225-242. [21]SUCHANDT S, RUNGE H, BREIT H, et al. Automatic extraction of traffic flows using TerraSAR-X along-track interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 807-819. [22]BUDILLON A, SCHIRINZI G. Performance evaluation of a GLRT moving target detector for TerraSAR-X along-track interferometric data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3350-3360. [23]ZHENG H, WANG J, LIU X. Synthetic aperture radar ground moving target indication via exploiting interferogram’s magnitude and phase [J]. Journal of Applied Remote Sensing, 2016, 10(3): 035012. [24]FRIEDLANDER B, PORAT B. VSAR: A high resolution radar system for detection of moving targets [J]. IEE Proceedings—Radar, Sonar and Navigation, 1997, 144(4): 205-218. [25]ZHENG H, WANG J, LIU X. Ground moving target indication of multichannel synthetic aperture radar based on statistics of the dominant-velocity image [J]. Journal of Applied Remote Sensing, 2016, 10(3): 036010. [26]ZHENG H, WANG J, LIU X. Ground moving target indication for multichannel synthetic aperture radar systems using asymmetry of spatial spectrum [J]. Journal of Applied Remote Sensing, 2018, 12(1): 015011. [27]ENDER J H G. Space-time processing for multichannel synthetic aperture radar [J]. Electronics & Communication Engineering Journal, 1999, 11(1): 29-38. [28]CUMMING I G, KAVANAGH P F, ITO M R. Resolving the Doppler ambiguity for spaceborne synthetic aperture radar [C]//International Geoscience and Remote Sensing Symposium. Zurich, Switzerland: IEEE, 1986: 1639-1643. [29]BAMLER R, RUNGE H. PRF-ambiguity resolving by wavelength diversity [J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6): 997-1003. [30]MARQUES P A C, DIAS J M B. Velocity estimation of fast moving targets using a single SAR sensor [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 75-89. [31]LI G, XIA X, XU J, et al. A velocity estimation algorithm of moving targets using single antenna SAR [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1052-1062. [32]WANG J, LIU X. Velocity estimation of moving targets in SAR imaging [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1543-1549. |
[1] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[2] | 方明, 赵婵娟, 赵春雷, 徐安祺, 陈剑. 基于STAP的行进间车载雷达杂波抑制技术研究[J]. 空天防御, 2022, 5(1): 71-77. |
[3] | 殷君君, 代晓康, 张记华, 刘希韫. 极化SAR复杂环境车辆目标检测[J]. 空天防御, 2020, 3(3): 38-45. |
[4] | 赵婷, 王申涛, 牛林, 席沛丽, 蔡云泽. 合成孔径雷达图像舰船尾迹检测算法[J]. 上海交通大学学报, 2020, 54(12): 1259-1268. |
[5] | 房明星1,2,毕大平1,沈爱国1. 多通道SAR-GMTI二维余弦调相散射波干扰[J]. 上海交通大学学报, 2018, 52(3): 356-364. |
[6] | 刘瑾瑾, 李元祥, 张增辉, 郁文贤. 基于小波阈值和字典学习的合成孔径雷达图像压缩[J]. 上海交通大学学报, 2015, 49(10): 1534-1539. |
[7] | 于永军a,徐锦法a,张梁a,熊智b. 基于改进KAZE特征的合成孔径雷达匹配算法[J]. 上海交通大学学报(自然版), 2015, 49(09): 1288-1292. |
[8] | 钟华1,宋广华2,杜昌平2. 一种双站合成孔径雷达的高分辨率成像与合成方法[J]. 上海交通大学学报(自然版), 2014, 48(03): 317-322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||