上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (2): 156-165.doi: 10.16183/j.cnki.jsjtu.2022.316
收稿日期:
2022-08-19
修回日期:
2023-02-17
接受日期:
2023-02-20
出版日期:
2024-02-28
发布日期:
2024-03-04
通讯作者:
周 利,教授,博士生导师;E-mail:zhouli209@hotmail.com.
作者简介:
孙乾洋 (1995-),博士生,主要从事冰载荷方面的研究.
基金资助:
SUN Qianyang1, ZHOU Li2(), DING Shifeng1, LIU Renwei1, DING Yi1
Received:
2022-08-19
Revised:
2023-02-17
Accepted:
2023-02-20
Online:
2024-02-28
Published:
2024-03-04
摘要:
极地船舶冰区航行时,冰阻力的准确预报在保障船舶航行安全方面起着重要作用.近年来,机器学习在船舶方面的应用越来越广泛,其中,人工神经网络(ANN)是机器学习领域中一种常用的方法.本文的重点是设计一个用于预报极地船舶冰阻力的ANN模型.参考传统的经验和半经验公式,选择合适的输入特征参数,通过大量的船舶模型试验数据来训练神经网络,搭建径向基(RBF)神经网络模型,并选用遗传算法(GA)进行模型优化.研究表明,基于7个特征参数输入的遗传算法优化径向基(RBF-GA)神经网络模型具有良好的泛化效果,与模型试验和实船试验数据对比,平均误差在8%左右,具有较高的精度,可作为冰阻力预报工具.
中图分类号:
孙乾洋, 周利, 丁仕风, 刘仁伟, 丁一. 基于人工神经网络的极地船舶冰阻力预报方法[J]. 上海交通大学学报, 2024, 58(2): 156-165.
SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi. An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165.
表2
冰阻力预报模型数据集来源
船名 | 来源 | 冰况 |
---|---|---|
Ferry NB550 | 文献[ | 平整冰 |
CCGS (Terry Fox) | 文献[ | 平整冰 |
USCGC (Healy) | 平整冰 | |
Korean RV (Araon) | 平整冰 | |
ICE BREAKER PSV(KS1654) | 文献[ | 平整冰 |
MV Arctic | 文献[ | 平整冰 |
Polar Star | 平整冰 | |
Japanese Model Ship | 平整冰 | |
Terry Fox | 平整冰 | |
PM Teshio | 平整冰 | |
R-Class | 平整冰 | |
Healy | 平整冰 | |
SA-15 | 平整冰 | |
Korean RV (Araon) | 文献[ | 碎冰 |
Terry Fox | 文献[ | 碎冰 |
An artic tanker | 文献[ | 平整冰 |
Icebreaking cargo vessel | 文献[ | 碎冰 |
Korean RV (Araon) | 文献[ | 碎冰 |
MT Uikku | 文献[ | 平整冰 |
MT Uikku | 文献[ | 平整冰 |
MT Uikku | 文献[ | 平整冰 |
Korean RV Araon | 文献[ | 平整冰 |
Arctic PSV | 平整冰 | |
Icebreaking cargo vessel | 文献[ | 碎冰 |
A new icebreaker of China | 文献[ | 平整冰 |
[1] |
ZHOU L, SU B, RISKA K, et al. Numerical simulation of moored structure station keeping in level ice[J]. Cold Regions Science and Technology, 2012, 71: 54-66.
doi: 10.1016/j.coldregions.2011.10.008 URL |
[2] |
HU J, ZHOU L. Further study on level ice resistance and channel resistance for an icebreaking vessel[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8: 169-176.
doi: 10.1016/j.ijnaoe.2016.01.004 URL |
[3] |
MARKOPOULOS A P, GEORGIOPOULOS S, MANOLAKOS D E. On the use of back propagation and radial basis function neural networks in surface roughness prediction[J]. Journal of Industrial Engineering International, 2016, 12: 389-400.
doi: 10.1007/s40092-016-0146-x URL |
[4] | KOUSHAN K. Empirical prediction of ship resistance and wetted surface area using artificial neural networks[J]. Practical Design of Ships & Other Floating Structures, 2001, 1: 501-507. |
[5] | COUSER P, MASON A, MASON G, et al. Artificial neural networks for hull resistance prediction[C]// 3rd International Conference on Computer and IT Applications in the Maritime Industries. Siguenza, Spain:Compit, 2004: 391-402. |
[6] |
CUI H, TURAN O, SAYER P. Learning-based ship design optimization approach[J]. Computer-Aided Design, 2012, 44: 186-195.
doi: 10.1016/j.cad.2011.06.011 URL |
[7] |
YANG Y, TU H, SONG L, et al. Research on accurate prediction of the container ship resistance by RBFNN and other machine learning algorithms[J]. Journal of Marine Science and Engineering, 2021, 9(4): 376-393.
doi: 10.3390/jmse9040376 URL |
[8] | 陈爱国, 叶家玮. 基于神经网络的船舶阻力计算数值实验研究[J]. 中国造船, 2010, 51(2): 21-27. |
CHEN Aiguo, YE Jiawei. Numerical experimental study of ship resistance calculation based on neural network[J]. Shipbuilding of China, 2010, 51(2): 21-27. | |
[9] | 张乔宇, 黄国富, 金建海. 基于机器学习的船舶阻力预报模型研究[J]. 舰船科学技术, 2019, 41(23): 6-10. |
ZHANG Qiaoyu, HUANG Guofu, JIN Jianhai. Research on ship resistance prediction model based on machine learning[J]. Ship Science and Technology, 2019, 41(23): 6-10. | |
[10] | KIM J H, KIM Y, LU W. Prediction of ice resistance for ice-going ships in level ice using artificial neural network technique[J]. Ocean Engineering, 2020, 9(6): 613-623. |
[11] | ISLAM M. Machine learning techniques for ship performance predictions in open water and ice[C]// The 31st International Ocean and Polar Engineering Conference. Rhodes, Greece: OnePetro, 2021: ISOPE-I-21-1296. |
[12] |
ZHANG M, SUN Q, GARME K, et al. Analysis of inland waterway ship performance in ice: Operation Time Window[J]. Ocean Engineering, 2022, 263: 112409.
doi: 10.1016/j.oceaneng.2022.112409 URL |
[13] | BROOMHEAD D, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988, 2: 321-355. |
[14] |
GAN M, PENG H, DONG X P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction[J]. Applied Mathematical Modelling, 2012, 36: 2911-2919.
doi: 10.1016/j.apm.2011.09.066 URL |
[15] | LEWIS J W, EDWARDS R Y. Methods for predicting icebreaking and ice resistance characteristics of icebreakers[J]. SNAME Transactions, 1970, 78: 213-249. |
[16] | VANCE G. Analysis of the performance of a 140-foot great lakes icebreaker:USCGC Katmai Bay. Report No.80-8[R]. Hanover, USA: U.S. ACRREL, 1980. |
[17] | ZAHN P, PHILLIPS L. Towed resistance trials in ice of the USCGC Mobile Bay (WTGB103)[M]. Montreal, Canada: Transportation Development Centre, 1987. |
[18] | LINDQVIST G. A straightforward method for calculation of ice resistance of ships[C]// Proceedings of 10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea, Sweden: POAC, 1989: 722-735. |
[19] | RISKA K, WILHELMSON M, ENGLUND K, et al. Performance of merchant vessels in ice in the Baltic. Research Report No. 52[R]. Helsinki, Finland: Winter Navigation Research Board, 1998. |
[20] | IONOV B. Ice resistance and its composition[R]. Moscow, Russia: Arctic and Antarctic Research Institute, 1988. |
[21] | KEINONEN A, BROWNE R P, REVILL C R, et al. Icebreaker performance prediction[J]. Transactions-Society of Naval Architects and Marine Engineers, 1991, 99: 221-248. |
[22] |
ZHANG M, GARME K, BURMAN M, et al. A numerical ice load prediction model based on ice-hull collision mechanism[J]. Applied Sciences, 2020, 10: 692-713.
doi: 10.3390/app10020692 URL |
[23] |
CHO S R, LEE S. A prediction method of ice breaking resistance using a multiple regression analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 708-719.
doi: 10.1515/ijnaoe-2015-0050 URL |
[24] |
YUM J G, KANG K J, JANG J H, et al. A Study on the Hull form design and ice resistance & propulsion performance of a platform support vessel (PSV) operated in the Arctic Ocean[J]. Journal of the Society of Naval Architects of Korea, 2018, 55: 497-504.
doi: 10.3744/SNAK.2018.55.6.497 URL |
[25] | JEONG S Y, CHOI K. A review on ice resistance prediction formula for icebreaking vessels[C]// Proceedings of the International Offshore and Polar Engineering Conference. Osaka, Japan: ISOPE, 2009: 513-522. |
[26] |
JEONG S Y, JANG J, KIM C H, et al. A study of ship resistance characteristics for ice-strengthened vessel by broken ice channel width and size of broken ice pieces[J]. Journal of the Society of Naval Architects of Korea, 2018, 55: 22-27.
doi: 10.3744/SNAK.2018.55.1.22 URL |
[27] |
SONG Y Y, KIM M C, CHUN H H. A study on resistance test of icebreaker with synthetic ice[J]. Journal of the Society of Naval Architects of Korea, 2007, 44: 389-397.
doi: 10.3744/SNAK.2007.44.4.389 URL |
[28] |
ZHOU L, DIAO F, SONG M, et al. Calculation methods of icebreaking capability for a double-acting polar ship[J]. Journal of Marine Science and Engineering, 2020, 8(3): 179-200.
doi: 10.3390/jmse8030179 URL |
[29] |
KIM M C, LEE W J, SHIN Y J. Comparative study on the resistance performance of an icebreaking cargo vessel according to the variation of waterline angles in pack ice conditions[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6: 876-893.
doi: 10.2478/IJNAOE-2013-0219 URL |
[30] |
CHO S R, JEONG S Y, LEE S. Development of effective model test in pack ice conditions of square-type ice model basin[J]. Ocean Engineering, 2013, 67: 35-44.
doi: 10.1016/j.oceaneng.2013.04.011 URL |
[31] |
HU J, ZHOU L. Experimental and numerical study on ice resistance for icebreaking vessels[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 626-639.
doi: 10.1515/ijnaoe-2015-0044 URL |
[32] | JEONG S. Ice resistance prediction method based on icebreaking pattern and ice-hull contact conditions[D]. Republic of Korea: Korea Maritime and Ocean University, 2016. |
[33] |
KIM M C, LEE S K, LEE W J, et al. Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5: 116-131.
doi: 10.2478/IJNAOE-2013-0121 URL |
[34] |
HUANG Y, HUANG S, SUN J. Experiments on navigating resistance of an icebreaker in snow covered level ice[J]. Cold Regions Science and Technology, 2018, 152: 1-14.
doi: 10.1016/j.coldregions.2018.04.007 URL |
[35] | CHAKRABARTI S K. Offshore structure modeling[M]. Chicago, USA: World Scientific, 1994. |
[36] |
SCHWARZ J. Some latest developments in icebreaker technology[J]. Journal of Energy Resources Technology, 1986, 108: 161-167.
doi: 10.1115/1.3231256 URL |
[37] | BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]. Berlin & Heidelberg, Germany: Springer-Verlag, 2009. |
[38] | RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. (2016-09-15) [2022-08-18]. https://doi.org/10.48550/arXiv.1609.04747. |
[39] | 于晨芳, 吕烈彪, 柳卫东. 破冰船冰阻力估算方法研究[J]. 船舶标准化工程师, 2018, 51(4): 74-81. |
YU Chenfang, LV Liebiao, LIU Weidong. Research on ice resistance estimation method for icebreakers[J]. Ship Standardization Engineer, 2018, 51(4): 74-81. | |
[40] | RISKA K, LEIVISKÄ T, NYMAN T, et al. Ice performance of the Swedish multi-purpose icebreaker Tor Viking II[C]// Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada: POAC, 2001: 849-866. |
[1] | 鲍朱杰, 李祯, 王斐亮, 庞博, 杨健. 基于机器学习的直角扣件滑移和扭转性能预测方法[J]. 上海交通大学学报, 2024, 58(2): 242-252. |
[2] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[3] | 赵志斌, 骆彬, 唐婷, 王春芳, 孙中华. 改进型自激谐振无线电能传输系统[J]. 上海交通大学学报, 2023, 57(7): 859-867. |
[4] | 蒋瑞民, 王宣灵, 张明恩, 赵斌. 基于量子遗传算法的反舰导弹航路规划方法[J]. 空天防御, 2023, 6(4): 31-34. |
[5] | 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 29-38. |
[6] | 夏云松, 谭剑锋, 韩水, 高金娥. 基于反向传播神经网络的风力机涡流发生器优化[J]. 上海交通大学学报, 2023, 57(11): 1492-1500. |
[7] | 孙婕, 李子昊, 张书宇. 机器学习在化学合成及表征中的应用[J]. 上海交通大学学报, 2023, 57(10): 1231-1244. |
[8] | 甘娥忠, 刘焱, 王海荣, 王承光. 基于机器学习性能度量理论的保障资源指标综合权衡研究[J]. 空天防御, 2023, 6(1): 38-44. |
[9] | 闫青, 鲁建厦, 江伟光, 邵益平, 汤洪涛, 李英德. 考虑双端口布局的紧致化仓储系统堆垛机路径优化[J]. 上海交通大学学报, 2022, 56(7): 858-867. |
[10] | 王箫剑, 洪君, 陈晶华, 李鸿光. 基于参数化建模和响应面优化的箱体减重研究[J]. 空天防御, 2022, 5(4): 60-66. |
[11] | 周天颜, 冯小恩, 范云锋, 董诗音, 李玉庆, 金慧中. 避免防空火力过剩的地面兵力防御部署优化模型[J]. 空天防御, 2022, 5(4): 19-23. |
[12] | 贾岛, 陈磊, 朱志鹏, 余曜, 迟德建. 机器学习在引战系统设计中的应用研究[J]. 空天防御, 2022, 5(2): 27-31. |
[13] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[14] | 周宇泰, 徐岳, 李宇, 蒋国韬. 基于遗传算法的干扰态势下三维雷达网优化布站方法[J]. 空天防御, 2022, 5(1): 52-59. |
[15] | 李川, 聂熠文, 刘军伟, 孟凡钦, 沈晓静. 基于机器学习的多算法融合航迹稳健起始方法[J]. 空天防御, 2022, 5(1): 20-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||