上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 946-953.doi: 10.16183/j.cnki.jsjtu.2017.08.008
陈忠灿1,李鹏2,孙培杰2,王天祥3,李晓慈1,黄永华1
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
CHEN Zhongcan1, LI Peng2, SUN Peijie2, WANG Tianxiang3, LI Xiaoci1, HUANG Yonghua1
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 为了揭示热力学排气系统的基本运行规律和为相关仿真程序的开发提供校核数据,设计和研制了一套工作于室温温区的热力学排气系统模拟装置.该装置安装于直径为450mm、体积约为0.11m3的椭圆封头圆筒形贮箱内,以制冷剂R141b为工质,选取具有代表性的充灌率和罐体热负荷,分别进行了喷射棒单独作用及喷射棒与节流阀、换热器共同作用下的贮箱压力控制实验,获得了相应工况下的压力控制特性.实验结果表明,当贮箱表压控制带下限设定为80kPa,上限设定为90kPa时,在单单依靠喷射棒的喷射混合消除热分层工作模式下,该系统运行超过0.98h后已无法维持压力在设定值以下;而在喷射棒和节流阀、换热器双重作用下,该系统可长期持续工作,2h内制冷剂R141b损失仅约5% (3.35kg),验证了该套系统可以胜任热力学排气过程的模拟.
中图分类号:
陈忠灿1,李鹏2,孙培杰2,王天祥3,李晓慈1,黄永华1. 工作于室温温区的热力学排气模拟与增压测试[J]. 上海交通大学学报(自然版), 2017, 51(8): 946-953.
CHEN Zhongcan1, LI Peng2, SUN Peijie2, WANG Tianxiang3, LI Xiaoci1, HUANG Yonghua1. Simulation of a Thermodynamic Vent System Working at
Room Temperature and Its Preliminary Pressurization Testing [J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 946-953.
[1]CHATO D J. Cryogenic technology development for exploration missions[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007. [2]HASAN M M, LIN C S, VAN DRESAR N T. Selfpressurization of a flight weight liquid hydrogen storage tank subjected to low heat flux[R]. Ohio:NASA/TM, 1991. [3]VAN DRESAR N T, HASAN M M, LIN C S. Selfpressurization of a flight weight liquid hydrogen tank: Effects of fill level at low wall heat flux[R]. Ohio:NASA/TM, 1991. [4]TIBOR L, CHARLES W. ZeroG thermodynamic venting system final report[R]. California:Rockwell Aerospace,1994. [5]HASTINGS L J, TUCKER S P, FLACHBART R H, et al. Marshall space flight center inspace cryogenic fluid management program overview[C]∥41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson: AIAA, 2005. [6]VAN OVERBEKE T J. Thermodynamic vent system test in a low earth orbit simulation[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale: AIAA, 2004. [7]HURLBERT E A, ROMIG K A, JIMENEZ R, et al. Thermodynamic vent system for an onorbit cryogenic reaction control engine[R]. Houston: NASA Tech Briefs, 2012. [8]CHIN S L, VAN DRESAR N T, HASAN M M. Pressure control analysis of cryogenic storage systems[J]. Journal of Propulsion and Power, 2004, 20(3): 480485. [9]HEDAYAT A, BAILEY J W, HASTINGS L J, et al. Test data analysis of a spray bar zeroG liquid hydrogen vent system for upper stages[J]. Advances in Cryogenic Engineering, 2004, 49:11711178. [10]FLACHBART R H, HASTINGS L J, MARTIN J J. Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]∥35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles: AIAA, 1999. [11]HASTINGS L J, FLACHBART R H, MARTIN J J, et al. Spray bar zerogravity vent system for onorbit liquid hydrogen[R]. Alabama:NASA/TM, 2003. [12]FLACHBART R H, HASTINGS L J, HEDAYAT A, et al. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2008, 48(5/6): 217222. [13]HASTINGS L J, BOLSHINSKIY L G, HEDAYAT A, et al. Liquid methane testing with a largescale spray bar thermodynamic vent system[R]. Washington: NASA/TP, 2014. [14]朱洪来, 孙沂昆, 张阿莉, 等. 低温推进剂在轨贮存与管理技术研究[J]. 载人航天, 2015, 21(1): 1318. ZHU Honglai, SUN Yikun, ZHANG Ali, et al. Research on onorbit storage and management technology of crogenic propellant[J]. Manned Spaceflight, 2015, 21(1): 1318. [15]张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3): 125131. ZHANG Tianping. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogenics, 2006, 12(3): 125131. [16]颜露, 黄永华, 吴静怡, 等. 低温推进剂在轨储存热力学排气系统TVS研究进展[J]. 低温与超导,2015, 43(2): 513. YAN Lu, HUANG Yonghua, WU Jingyi, et al. Development of thermodynamic venting system technology for cryogenic propellant storage on orbit[J]. Cryogenics & Superconductivity, 2015, 43(2): 513. [17]李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究进展[J]. 载人航天, 2012, 18(1): 3036. LI Peng, SUN Peijie, BAO Yiying, et al. Cryogenic propellant longterm storage on orbit technology overview[J]. Manned Spaceflight, 2012, 18(1): 3036. [18]冶文莲, 王小军,王丽红. 微重力下低温贮箱压力控制技术进展[J]. 低温与超导, 2012,40(6) : 812. YE Wenlian, WANG Xiaojun, WANG Lihong. Progress of pressure control technology of cryogenic storage tanks in microgravity[J].Crogenics & Superconductivity, 2012, 40(6): 812. [19]胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术, 2009(6): 2834. HU Weifeng, SHEN Lin, YANG Jianmin, et al. Progress of study on transpiration control technology for orbit longterm applied cryogenic propellant[J]. Missiles and Space Vehicles, 2009 (6): 2834. [20]胡伟峰, 申麟, 彭小波,等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程,2011(3): 5966. HU Weifeng, SHEN Lin, PENG Xiaobo, et al. Key technology analysis of boilfoo control study on cryogenic propellant longterm application on orbit[J]. Crogenics, 2011 (3): 5966. [21]马原, 厉彦忠, 王磊, 等. 低温燃料贮箱热力学排气系统优化分析与性能研究[J]. 低温与超导, 2014,42(7): 1015. MA Yuan, LI Yanzhong, WANG Lei, et al. Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J]. Cryogenics & Superconductivity, 2014, 42(7): 1015. [22]杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 486487. |
[1] | 胡亚元, 王啊强. 饱和孔隙-裂隙黏土双层地基的一维固结分析[J]. 上海交通大学学报, 2022, 56(4): 443-453. |
[2] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[3] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[4] | 汤洪涛, 王丹南, 邵益平, 赵文彬, 江伟光, 陈青丰. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213. |
[5] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[6] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[7] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[8] | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
[9] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[10] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[11] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[12] | 郑德重, 杨媛媛, 谢哲, 倪扬帆, 李文涛. 基于Gaussian混合的距离度量学习数据划分方法[J]. 上海交通大学学报, 2021, 55(2): 131-140. |
[13] | 侯珏, 姚栋伟, 吴锋, 吕成磊, 王涵, 沈俊昊. 混合励磁电机的电动汽车增程器控制策略[J]. 上海交通大学学报, 2021, 55(2): 206-212. |
[14] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[15] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 670
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||