上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 443-453.doi: 10.16183/j.cnki.jsjtu.2021.019
收稿日期:
2021-01-18
出版日期:
2022-04-28
发布日期:
2022-05-07
作者简介:
胡亚元(1968-),男,浙江省兰溪市人,副教授,主要从事地基加固和岩土的本构关系研究. 电话(Tel.):13588410150;E-mail: 基金资助:
Received:
2021-01-18
Online:
2022-04-28
Published:
2022-05-07
摘要:
为研究双孔结构饱和黏土双层地基的一维固结特性,在一维完全侧限条件下根据混合物理论建立了饱和孔隙-裂隙介质的固结控制方程.采用Fortran语言编制了饱和孔隙-裂隙黏土一维固结的有限元程序,利用单层地基研究成果验证本文模型和程序的正确性.运用有限元程序分析压缩模量、渗透系数及土层厚度等因素对饱和孔隙-裂隙黏土双层地基固结特性的影响.结果表明:增大上层较软土的压缩模量和渗透系数能更显著地加快地基的固结速率;裂隙和孔隙中的超孔压具有不同的消散规律,地基底部孔隙超孔压的消散滞后于裂隙超孔压,滞后效应随上层土渗透系数而增大.对于饱和孔隙-裂隙黏土双层地基,改良上层较软孔隙-裂隙黏土性质可较好地改善整个地基的固结特性.
中图分类号:
胡亚元, 王啊强. 饱和孔隙-裂隙黏土双层地基的一维固结分析[J]. 上海交通大学学报, 2022, 56(4): 443-453.
HU Yayuan, WANG Aqiang. Analysis of 1-D Consolidation of Double-Layered Saturated Porous-Fissured Clay Foundation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 443-453.
[1] | 余松霖, 柯瀚, 詹良通, 等. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376. |
YU Songlin, KE Han, ZHAN Liangtong, et al. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(12): 2364-2376. | |
[2] |
ZHAN L T, ZHANG Z, CHEN Y M, et al. The 2015 Shenzhen catastrophic landslide in a construction waste dump: Reconstitution of dump structure and failure mechanisms via geotechnical investigations[J]. Engineering Geology, 2018, 238: 15-26.
doi: 10.1016/j.enggeo.2018.02.019 URL |
[3] |
YANG L A, TAN T S, TAN S A, et al. One-dimensional self-weight consolidation of a lumpy clay fill[J]. Géotechnique, 2002, 52(10): 713-725.
doi: 10.1680/geot.2002.52.10.713 URL |
[4] |
JUNEJA A, CHAFALE A S. Consolidation beha-viour of double-porosity clay using flexible wall permeameter[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2019, 172(3): 179-191.
doi: 10.1680/jgrim.18.00060 URL |
[5] |
SHI X S, HERLE I, MUIR WOOD D. A consolidation model for lumpy composite soils in open-pit mining[J]. Géotechnique, 2018, 68(3): 189-204.
doi: 10.1680/jgeot.16.P.054 URL |
[6] |
CHENG T, YAN K Q, ZHENG J J, et al. Semi-analytical and semi-numerical method for plane strain consolidation of double-layer foundation considering stress paths[J]. European Journal of Environmental and Civil Engineering, 2017, 21(10): 1187-1216.
doi: 10.1080/19648189.2016.1150903 URL |
[7] | 崔军, 谢康和, 夏长青, 等. 变荷载下考虑结构性的双层地基一维非线性固结分析[J]. 中南大学学报(自然科学版), 2018, 49(7): 1710-1717. |
CUI Jun, XIE Kanghe, XIA Changqing, et al. One-dimensional nonlinear consolidation analysis of double layered structured soils under time-dependent loading[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1710-1717. | |
[8] | 钟祖良, 别聪颖, 胡伦, 等. 基于Forchheimer渗流的土石混合体单向固结模型研究[J]. 地下空间与工程学报, 2019, 15(2): 473-480. |
ZHONG Zuliang, BIE Congying, HU Lun, et al. Research on one-dimensional consolidation model of soil-rock mixtures backfill under Forchheimer seepage model[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 473-480. | |
[9] | 刘忠玉, 夏洋洋, 石明生, 等. 考虑自重应力和Hansbo渗流的饱和黏土一维弹黏塑性固结分析[J]. 岩土工程学报, 2020, 42(2): 221-229. |
LIU Zhongyu, XIA Yangyang, SHI Mingsheng, et al. One-dimensional elastic viscoplastic consolidation analysis of saturated clay considering gravity stress and Hansbo’s flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 221-229. | |
[10] | 江留慧, 李传勋, 杨怡青, 等. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590. |
JIANG Liuhui, LI Chuanxun, YANG Yiqing, et al. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading[J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590. | |
[11] |
CHEN R P, LIU P, LIU X M, et al. Pore-scale model for estimating the bimodal soil-water characteristic curve and hydraulic conductivity of compacted soils with different initial densities[J]. Engineering Geology, 2019, 260: 105199.
doi: 10.1016/j.enggeo.2019.105199 URL |
[12] | 蔡国庆, 吴天驰, 王亚南, 等. 双孔结构非饱和压实土微观结构演化模型[J]. 岩土力学, 2020, 41(11): 3583-3590. |
CAI Guoqing, WU Tianchi, WANG Yanan, et al. Model of the microstructure evolution of unsaturated compacted soils with double-pore structure[J]. Rock and Soil Mechanics, 2020, 41(11): 3583-3590. | |
[13] |
GU K, SHI B, LIU C, et al. Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils[J]. Engineering Geology, 2018, 240: 34-47.
doi: 10.1016/j.enggeo.2018.04.004 URL |
[14] | 巩学鹏, 唐朝生, 施斌, 等. 黏性土干/湿过程中土结构演化特征研究进展[J]. 工程地质学报, 2019, 27(4): 775-793. |
GONG Xuepeng, TANG Chaosheng, SHI Bin, et al. Evolution of soil microstructure during drying and wetting[J]. Journal of Engineering Geology, 2019, 27(4): 775-793. | |
[15] |
KHALILI N, VALLIAPPAN S, WAN C F. Consolidation of Fissured clays[J]. Géotechnique, 1999, 49(1): 75-89.
doi: 10.1680/geot.1999.49.1.75 URL |
[16] |
GHAFOURI H R, LEWIS R W. A finite element double porosity model for heterogeneous deformable porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(11): 831-844.
doi: 10.1002/(SICI)1096-9853(199611)20:11<831::AID-NAG850>3.0.CO;2-6 URL |
[17] |
CALLARI C, FEDERICO F. FEM validation of a double porosity elastic model for consolidation of structurally complex clayey soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(4): 367-402.
doi: 10.1002/(SICI)1096-9853(20000410)24:4<367::AID-NAG71>3.0.CO;2-# URL |
[18] | 刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京: 科学出版社, 2016. |
LIU Yan, ZHAO Chenggang, CAI Guoqing. Rational soil mechanics and thermodynamics [M]. Beijing: Science Press, 2016. | |
[19] | ZHANG Q, CHOO J, BORJA R I. On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media[J]. Compu-ter Methods in Applied Mechanics and Engineering, 2019, 353: 570-592. |
[20] | 龚晓南, 谢康和. 土力学[M]. 北京: 中国建筑工业出版社, 2014: 15-89. |
GONG Xiaonan, XIE Kanghe. Soil mechanics [M]. Beijing: China Architecture and Building Press, 2014: 15-89. | |
[21] | 雷华阳, 任倩, 卢海滨, 等. 相对厚度变化下双层软黏土地基固结特性研究[J]. 地下空间与工程学报, 2018, 14(3): 705-711. |
LEI Huayang, REN Qian, LU Haibin, et al. Research on consolidation property of double layer soft clay foundation under different relative thickness conditions[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 705-711. |
[1] | 杨其润, 李明广, 陈锦剑, 吴航. 同步实施的相邻基坑相互作用机理[J]. 上海交通大学学报, 2022, 56(6): 722-729. |
[2] | 邱杰凯, 丁肇伟, 宋春雨, 陈龙珠. 成层广义Gibson地基中桩的水平动力响应[J]. 上海交通大学学报, 2022, 56(4): 431-442. |
[3] | 郭德平, 李铮, 彭森林, 曾志凯, 吴岱峰. 基于Newmark隐式时间积分方案的裂纹动态扩展的数值计算方法[J]. 上海交通大学学报, 2021, 55(6): 689-697. |
[4] | 潘上, 刘谨豪, 张琪, 叶冠林. 三轴仪K0系数测量与应力路径试验功能的研发[J]. 上海交通大学学报, 2021, 55(4): 372-379. |
[5] | 应宏伟, 许鼎业, 王迪, 章丽莎. 波动承压水下基坑底部弱透水层的非Darcy渗流分析[J]. 上海交通大学学报, 2020, 54(12): 1300-1306. |
[6] | 韩红桂, 杨士恒, 张璐, 乔俊飞. 城市污水处理过程出水氨氮优化控制[J]. 上海交通大学学报, 2020, 54(9): 916-923. |
[7] | 吴威, 李明广, 史玉金, 王建华. 上海地层长期变形特性及其对基础设施的影响[J]. 上海交通大学学报, 2018, 52(11): 1429-1436. |
[8] | 章红兵,范凡,胡昊. 基坑群施工对邻近隧道影响与隧道保护[J]. 上海交通大学学报(自然版), 2016, 50(05): 803-809. |
[9] | 武朝军, 叶冠林, 王建华. 上海莲花路浅部土层超固结特性试验研究[J]. 上海交通大学学报, 2016, 50(03): 331-335. |
[10] | 程演, 张璐璐, 张磊, 王建华. 基于随机场的非饱和土固结分析[J]. 上海交通大学学报, 2014, 48(11): 1528-1535. |
[11] | 朱龙, 徐震, 白占伟, 陈锦剑, 王建华. 大顶力作用下圆形沉井后背土体受力变形特性分析[J]. 上海交通大学学报, 2014, 48(11): 1510-1516. |
[12] | 刘翔, 白海梅, 陈晓晨, 陈锦剑, 王建华. 软土中大直径顶管管道受力特性测试[J]. 上海交通大学学报, 2014, 48(11): 1503-1509. |
[13] | 张校通, 郑东生, 夏小和, 王建华. 非均质饱和-非饱和土的变形特性[J]. 上海交通大学学报, 2012, 46(10): 1544-1547. |
[14] | 刘映晶, 陈锦剑, 王建华, 徐安军, 李耀良. 逆作土方通道式施工工艺对基坑变形的影响[J]. 上海交通大学学报, 2012, 46(01): 89-93. |
[15] | 向国威, 叶冠林, 王建华. 冲击振动在砂土中传播的模型试验研究[J]. 上海交通大学学报, 2012, 46(01): 136-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||