上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 954-961.
张良俊1,2,李晓慈1,吴静怡1,蔡爱峰1
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
ZHANG Liangjun1,2,LI Xiaoci1,WU Jingyi1,CAI Aifeng1
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 以大型空间展开机构高低温展开试验系统微重力环境模拟悬吊装置为对象,采用Solidworks软件建立悬吊装置有限元分析模型,并利用ANSYS软件针对不同展开机构产品悬吊载荷及不同工作温度状态进行热结构耦合分析.通过数值分析得出不同工况下悬吊装置的热变形及应力情况,并分析了其对展开机构展开长滑轨倾斜角的影响.研究内容对应用于高低温环境下的微重力环境模拟悬吊装置优化设计提供参考,并对空间展开机构高低温微重力展开试验的有效实施和参数调试具有指导意义.
中图分类号:
张良俊1,2,李晓慈1,吴静怡1,蔡爱峰1. 大型空间展开机构微重力环境模拟
悬吊装置热结构耦合分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 954-961.
ZHANG Liangjun1,2,LI Xiaoci1,WU Jingyi1,CAI Aifeng1. ThermalStructure Coupling Analysis of
Microgravity Environment Simulation Suspension Structure for
Large Space Deployable Mechanisms[J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 954-961.
[1]WU S C, GHOFRANIAN S. Anomaly simulation and resolution of International Space Station solar array deployment[J]. Proceedings of SPIE, 2005, 5799(5): 3847. [2]FANG G Q, PENG F J. Shape memory polymer composite and its application for deployable space truss[C]∥Proceedings of the International Astronautical Congress. Prague: IAC, 2010: 60906095. [3]PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautics, 2010,67(1/2): 1226. [4]PROWALD S J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal, 2013, 5(3/4): 89115. [5]STONGE D, GOSSELIN C. Deployable mechanisms for small to medium sized space debris removal[C]∥Proceedings of the International Astronautical Congress, Toronto: IAC, 2014: 14611471. [6]XIE Z W, GONG Y C, SHI S C, et al. A survey of the space solar array technique[J]. Journal of Astronautics, 2014, 35(5): 491498. [7]黄本诚,童靖宇.空间环境工程学[M]. 北京: 中国科学技术出版社, 2010. [8]HIRZINGER G, BRUNNER B, DIETRICH J, et al. ROTEX: The first remotely controlled robot in space[C]∥IEEE International Conference on Robotics and Automation. San Diego: IEEE, 1994: 26042611. [9]WHITE G, XU Y. An active verticaldirection gravity compensation system[J]. Instrumentation and Measurement, 1995, 43(6): 786792. [10]KONINGSTEIN R, CANNON R H. Experiments with model simplified computed torque manipulator controllers for free flying robots[J]. Journal of Guidance Control Dynamics, 2012, 18(6): 13871391. [11]YOSHIDA K. Experimental study on the dynamics and control of a space robot with experimental freefloating robot satellite(EFFORTS)simulators[J]. Advanced Robotics, 1995, 9(6): 583602. [12]SOPENSKY E. Trying out zero gravity[J]. IEEE Potentials, 1998, 17(3): 3841. [13]FISEHER A. Gravity compensation of deployable space structures[D]. Cambridge: The University of Cambridge, 2000. [14]FISCHER A, PELLEGRINO S. Interaction between gravity compensation suspension system and deployable structure[J]. Journal of Spacecraft and Rockets, 2000, 37(1): 9399. [15]CARIGNAN C R, AKIN D L. The reaction stabilization of onorbit robots[J]. Control Systems IEEE, 2000, 20(6): 1933. [16]屈斌, 王启, 王海平, 等. 失重飞机飞行方法研究[J].飞行力学, 2007, 25(2): 6567. QU Bin, WANG Qi, WANG Haiping, et al. ZeroG aircraft flight method research[J]. Flight Dynamics, 2007,25(2): 6567. [17]姚燕生, 梅涛. 空间操作的地面模拟方法——水浮法[J]. 机械工程学报, 2008, 44(3): 182188 YAO Yansheng, MEI Tao. Simulation method of space operation on the ground—buoyancy method[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 182188. [18]路波. 零重力环境模拟气动悬挂系统的关键技术研究[D]. 杭州: 浙江大学机械电子控制工程研究所, 2009. [19]高海波, 郝峰, 邓宗全, 等. 空间机械臂收拢状态零重力模拟[J]. 机器人, 2011, 33(1): 915. GAO Haibo, HAO Feng, DENG Zongquan, et al. ZeroG simulation of space manipulator in furled status[J]. Robot, 2011, 33(1): 915. [20]JIANG Z H, LIU S L, LI H, et al. Mechanism design and system control for humanoid space robot movement using a simple gravitycompensation system[J]. International Journal of Advanced Robotic Systems, 2013,10(11) : 502512. [21]张良俊,吴静怡,黄永华,等.大型空间展开机构常压高低温环境模拟试验系统研制[J].航天器环境工程, 2016, 33(4): 428433. ZHANG Liangjun, WU Jingyi, HUANG Yonghua, et al. Design and experiment of an innovative normal atmosphere pressure thermal environment simulation system using for large space deployable mechanism testing[J]. Spacecraft Environment Engineering, 2016, 33(4): 591594. [22]许京荆. ANSYS Workbench工程实例详解[M]. 北京: 人民邮电出版社, 2015. [23]UMALE S, DECK C, BOUROET N, et al. Experimental mechanical characterization of abdominal organs: liver, kidney & spleen[J]. Journal of Mechanical Behavior of Biomechanical Materials, 2013, 17: 2233. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||