上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 962-969.
吉雍彬1,杜世强2,虞江鹏1,葛冰1,臧述升1
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
JI Yongbin1,DU Shiqiang2,YU Jiangpeng1,GE Bing1, ZANG Shusheng1
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 针对燃烧室发散冷却性能的研究,设计了3头部扇段模型燃烧室进行冷热态对比实验.通过对模型环形燃烧室内外环面上的温度进行测量,讨论冷热态时综合冷却效率分布差异,并考察了冷却空气量与主流空气量之比对综合冷却效率的影响规律.结果表明:发散冷却在冷热态时的综合冷却性能差异显著,主要是由于燃烧反应的发生改变了燃烧室内流场和温度场,进而引起壁面热负荷变化;无论冷态还是热态,在旋流主流的作用下,内环面上的发散气膜相比于外环面更易吹离壁面.随着无量纲流量比的增加,面积平均综合冷却效率均随之增加,但增加幅度逐渐降低.
中图分类号:
吉雍彬1,杜世强2,虞江鹏1,葛冰1,臧述升1. 环形燃烧室冷热态发散冷却性能的对比实验 [J]. 上海交通大学学报(自然版), 2017, 51(8): 962-969.
JI Yongbin1,DU Shiqiang2,YU Jiangpeng1,GE Bing1, ZANG Shusheng1. Comparative Experimental Investigation of Effusion Cooling
Performance on the Annular Combustor Liners at
Nonreacting/Reacting Flow Conditions[J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 962-969.
[1]SCHULZ A. Combustor liner cooling technology in scope of reduced pollutant formation and rising thermal efficiencies[J]. Heat Transfer in Gas Turbine Systems, 2001,934(1): 135146. [2]KREWINKEL R. A review of gas turbine effusion cooling studies[J]. International Journal of Heat and Mass Transfer, 2013, 66: 706722. [3]林宇震. 燃烧室多斜孔壁气膜冷却研究[D]. 北京: 北京航空航天大学能源动力与工程学院, 1997. [4]LEGER B, MIRON P, EMIDIO J M. Geometric and aerothermal influences on multiholed plate temperature: Application on combustor wall[J]. International Journal of Heat and Mass Transfer, 2003, 46: 12151222. [5]OGUNTADE H I, ANDREWS G E, BURNS A D, et al. The influence the number of holes on effusion cooling effectiveness for an X/D of 4.7[C]∥Proceeding of ASME TURBO EXPO. Montreal: ASME,2015, GT201542248. [6]HUANG Z, XIONG Y B, LIU Y Q, et al. Experimental investigation of fullcoverage effusion cooling through perforated flat plates[J]. Applied Thermal Engineering, 2015, 76: 7685. [7]GOLDSTEIN R J, STONE L D. Rowofholes film cooling of curved walls at low injection angles[J]. Journal of Turbomachinery, 1997, 119(3): 574579. [8]KOC I, PARMAKSIZOGLU C, CAKAN M. Numerical investigation of film cooling effectiveness on the curved surface[J]. Energy Conversion and Management, 2006, 47(9/10): 12311246. [9]PATIL S, ABRAHAM S, TAFTI D, et al. Experimental and numerical investigation of convective heat transfer in a gas turbine can combustor[J]. Journal of Turbomachinery, 2011, 133(1): 011028. [10]PATIL S, SEDALOR T, TAFTI D, et al. Study of flow and convective heat transfer in a simulated scaled up low emission annular combustor[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(3): 031010. [11]GOMEZ R D, KUMAR V, EKKAD S, et al. Flow field and liner heat transfer for a model annular combustor equipped with radial swirlers[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA,2014: 3436. [12]CARMACK A, EKKAD S, KIM Y, et al. Comparison of flow and heat transfer distributions in a can combustor for radial and axial swirlers under cold flow conditions[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(3): 031012. [13]WURM B, SCHULZ A, BAUER H J. A new test facility for investigating the interaction between swirl flow and wall cooling films in combustors[C]∥Proceeding of ASME TURBO EXPO. Orlando: ASME,2009: 59961. [14]WURM B, SCHULZ A, BAUER H J, et al. Cooling efficiency for assessing the cooling performance of an effusion cooled combustor liner[C]∥Proceeding of ASME TURBO EXPO. San Antonio: ASME, 2013: 94304. [15]WURM B, SCHULZ A, BAUER H J, et al. Impact of swirl flow on the penetration behaviour and cooling performance of a starter cooling film in modern lean operating combustion chambers[C]∥Proceeding of ASME TURBO EXPO. Dusseldorf: ASME,2014: 25520. [16]ANDREINI A, BECCHI R, FACCHINI B, et al. Adiabatic effectiveness and flow field measurements in a realistic effusion cooled lean burn combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031506. [17]ANDREINI A, FACCHINI B, BECCHI R, et al. Effect of slot injection and effusion array on the liner heat transfer coefficient of a scaled leanburn combustor with representative swirling flow[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(4): 041501. [18]ANDREINI A, SOGHE R D, FACCHINI B, et al. Local source based CFD modeling of effusion cooling holes: Validation and application to an actual combustor test case[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(1): 011506. [19]ANDREINI A, FACCHINI B, INSINNA M, et al. Hybird RansLes modeling of a hot streak generator oriented to the study of combustorturbine interaction[C]∥Proceeding of ASME TURBO EXPO. Montreal: ASME,2015: 42402. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||