J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (1): 33-39.doi: 10.1007/s12204-020-2232-x
HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟)
出版日期:
2021-02-28
发布日期:
2021-01-19
通讯作者:
MA Yixin (马艺馨)
E-mail:y.ma@sjtu.edu.cn
HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟)
Online:
2021-02-28
Published:
2021-01-19
Contact:
MA Yixin (马艺馨)
E-mail:y.ma@sjtu.edu.cn
摘要: Electrical impedance tomography (EIT) image reconstruction is a non-linear problem. In general, finite element model is the critical basis of EIT image reconstruction. A 3D human thorax modeling method for EIT image reconstruction is proposed herein to improve the accuracy and reduce the complexity of existing finite element modeling methods. The contours of human thorax and lungs are extracted from the layers of magnetic resonance imaging (MRI) images by an optimized Otsu’s method for the construction of the 3D human thorax model including the lung models. Furthermore, the GMSH tool is used for finite element subdivision to generate the 3D finite element model of human thorax. The proposed modeling method is fast and accurate, and it is universal for different types of MRI images. The effectiveness of the proposed method is validated by extensive numerical simulation in MATLAB. The results show that the individually oriented 3D finite element model can improve the reconstruction quality of the EIT images more effectively than the cylindrical model, the 2.5D model and other human chest models.
中图分类号:
HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39.
HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39.
[1] | EY¨UBOGLU B M, BROWN B H, BARBER D C.Problems of cardiac output determination from electricalimpedance tomography scans [J]. Clinical Physicsand Physiological Measurement, 1988, 9(Sup. A): 71-77. |
[2] | WANG Y H, PAN Y, YANG M. Application of electricalimpedance tomography for postoperative lungrecruitment in patients undergoing off pump coronaryartery bypass grafting surgery [J]. Journal of ShanghaiJiao Tong University (Medical Science), 2018, 38(6):653-657 (in Chinese). |
[3] | SHI X T, YOU F S, FU F, et al. Sensitivity research ondetection of impedance distortion inside human headphantom by electrical impedance tomography method[J]. Chinese Medical Equipment Journal, 2011, 32(5):1-3 (in Chinese). |
[4] | XU K, LIU M H, LIU D, et al. Simulation of multiphaseflows in microscale hemodialysis [J]. ChineseJournal of Computational Physics, 2009, 26(1): 49-56(in Chinese). |
[5] | CAO Z, WANG H X. Electromagnetic model and imagereconstruction algorithms based on EIT system [J].Transactions of Tianjin University, 2006, 12(6): 420-424. |
[6] | LIU D, KHAMBAMPATI A K, DU J F. A parametriclevel set method for electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 2018,37(2): 451-460. |
[7] | GRYCHTOL B, ADLER A. Uniform background assumptionproduces misleading lung EIT images [J].Physiological Measurement, 2013, 34(6): 579-593. |
[8] | GONZ′ALEZ G, HUTTUNEN J M J,KOLEHMAINEN V, et al. Experimental evaluationof 3D electrical impedance tomography with totalvariation prior [J]. Inverse Problems in Science andEngineering, 2016, 24(8): 1411-1431. |
[9] | SUN B Y, YUE S H, HAO Z H, et al. An improvedTikhonov regularization method for lung cancermonitoring using electrical impedance tomography[J]. IEEE Sensors Journal, 2019, 19(8): 3049-3057. |
[10] | ZHANG S, XU G Z, ZHANG X Y, et al. Computationof a 3-D model for lung imaging with electricalimpedance tomography [J]. IEEE Transactions onMagnetics, 2012, 48(2): 651-654. |
[11] | CRABB M G, DAVIDSON J L, LITTLE R, et al. Mutualinformation as a measure of image quality for 3Ddynamic lung imaging with EIT [J]. Physiological Measurement,2014, 35(5): 863-879. |
[12] | FAN W R, WANG H X. 3D modelling of the humanthorax for ventilation distribution measured throughelectrical impedance tomography [J]. MeasurementScience and Technology, 2010, 21(11): 115801. |
[13] | HUANG Z, CHEN Z. Three-dimensional finite elementmodeling of a maxillary premolar tooth based on themicro-CT scanning: A detailed description [J]. Journalof Huazhong University of Science and Technology(Medical Sciences), 2013, 33(5): 775-779. |
[14] | CHEN X Y, CHU M L, CHANG X M, et al. 3D EIT model construction based on lung and image reconstructionresearch [J]. Chinese Journal of BiomedicalEngineering, 2017, 36(5): 622-626 (in Chinese). |
[15] | OTSU N. A threshold selection method from gray-levelhistograms [J]. IEEE Transactions on Systems, Man,and Cybernetics, 1979, 9(1): 62-66. |
[16] | SUN H Z, MA Y X, WU H W, et al. An improvedOTSU’s method for CT image boundary contour extraction[C]//IEEE International Conference on ImagingSystems and Techniques. Chania, Greece: IEEE,2016: 493-497. |
[17] | LI L, MA Y X, WU H W. Lung boundary detectionmethod based on binary morphology theory [J]. ChineseJournal of Medical Instrumentation, 2010, 34(6):413-417 (in Chinese). |
[18] | ZHANG F. 3D solid reconstruction based on tomographicimage [D]. Hefei, China: University of Scienceand Technology of China, 2009 (in Chinese). |
[19] | WANG H X, HUANG W R, FAN W R. Measurementpattern for 3D electrical impedance tomography [J].Journal of Tianjin University, 2012, 45(8): 729-734(in Chinese). |
[20] | ZHANG M, YUE S H. Application of a novel optimization method for EIT imaging [J]. Transducer andMicrosystem Technologies, 2018, 37(8): 154-156 (in Chinese). |
[1] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[2] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[3] | SUN Na (孙娜), WANG Lipo (王利坡), LI Yuanbo (李渊博), LI Lin (李琳), QI Shuaipeng (齐帅鹏), SHEN Yongxing (沈泳星). Scaling Relation of the Scalar Diffusion in a Rotating Mixer[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 170-175. |
[4] | CAI Weijie (蔡伟杰), HAMUSHAN Musha (木沙·哈木山), ZHAO Changli (赵常利), CHENG Pengfei (程鹏飞), ZHONG Wanrun (钟万润), HAN Pei (韩培). Influence of Supramolecular Chiral Hydrogel on Cellular Behavior of Endothelial Cells Under High-Glucose-Induced Injury[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 17-24. |
[5] | GUO Jinyao (郭金尧), LI Runhuan (李润桓), WANG Jiaojiao (王娇娇), ARRANZ Javier, LI Yiran (李怡然), CHAI Xinyu (柴新禹), WANG Jiguang (王继光), SUI Xiaohong (隋晓红) . Blood Pressure Change in Intrafascicular Vagal Activities[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 47-54. |
[6] | CHEN Fanji (陈范吉), JIANG Pingping (姜萍萍), YAN Guozheng (颜国正), WANG Wei (汪炜), MENG Yicun (孟一村). Design of Multi-Coil Wireless Power Transfer System for Gastrointestinal Capsule Robot[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 76-83. |
[7] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
[8] | SUN Xilong, WANG Dengfeng, LI Ruheng, ZHANG Bin . Multi-Objective Optimization for Structure Crashworthiness Based on Kriging Surrogate Model and Simulated Annealing Algorithm[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 727-738. |
[9] | DENG Junyong, JIANG Lin . BFM: A Bus-Like Data Feedback Mechanism Between Graphics Processor and Host CPU[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 615-622. |
[10] | XIANG Jiawei, ZHANG Jinyi, WANG Bin, MA Yongbin . Low Data Overlap Rate Graph-Based SLAM with Distributed Submap Strategy[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 650-658. |
[11] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
[12] | HUANG Hantao, ZHOU Jingye, DI Qing, ZHOU Jiawei, LI Jiawang . Three-Dimensional Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles with Input Saturation[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 470-477. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 491
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||