上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (8): 962-969.
吉雍彬1,杜世强2,虞江鹏1,葛冰1,臧述升1
发布日期:
2017-08-30
基金资助:
JI Yongbin1,DU Shiqiang2,YU Jiangpeng1,GE Bing1, ZANG Shusheng1
Published:
2017-08-30
Supported by:
摘要: 针对燃烧室发散冷却性能的研究,设计了3头部扇段模型燃烧室进行冷热态对比实验.通过对模型环形燃烧室内外环面上的温度进行测量,讨论冷热态时综合冷却效率分布差异,并考察了冷却空气量与主流空气量之比对综合冷却效率的影响规律.结果表明:发散冷却在冷热态时的综合冷却性能差异显著,主要是由于燃烧反应的发生改变了燃烧室内流场和温度场,进而引起壁面热负荷变化;无论冷态还是热态,在旋流主流的作用下,内环面上的发散气膜相比于外环面更易吹离壁面.随着无量纲流量比的增加,面积平均综合冷却效率均随之增加,但增加幅度逐渐降低.
中图分类号:
吉雍彬1,杜世强2,虞江鹏1,葛冰1,臧述升1. 环形燃烧室冷热态发散冷却性能的对比实验 [J]. 上海交通大学学报, 2017, 51(8): 962-969.
JI Yongbin1,DU Shiqiang2,YU Jiangpeng1,GE Bing1, ZANG Shusheng1. Comparative Experimental Investigation of Effusion Cooling
Performance on the Annular Combustor Liners at
Nonreacting/Reacting Flow Conditions[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 962-969.
[1]SCHULZ A. Combustor liner cooling technology in scope of reduced pollutant formation and rising thermal efficiencies[J]. Heat Transfer in Gas Turbine Systems, 2001,934(1): 135146. [2]KREWINKEL R. A review of gas turbine effusion cooling studies[J]. International Journal of Heat and Mass Transfer, 2013, 66: 706722. [3]林宇震. 燃烧室多斜孔壁气膜冷却研究[D]. 北京: 北京航空航天大学能源动力与工程学院, 1997. [4]LEGER B, MIRON P, EMIDIO J M. Geometric and aerothermal influences on multiholed plate temperature: Application on combustor wall[J]. International Journal of Heat and Mass Transfer, 2003, 46: 12151222. [5]OGUNTADE H I, ANDREWS G E, BURNS A D, et al. The influence the number of holes on effusion cooling effectiveness for an X/D of 4.7[C]∥Proceeding of ASME TURBO EXPO. Montreal: ASME,2015, GT201542248. [6]HUANG Z, XIONG Y B, LIU Y Q, et al. Experimental investigation of fullcoverage effusion cooling through perforated flat plates[J]. Applied Thermal Engineering, 2015, 76: 7685. [7]GOLDSTEIN R J, STONE L D. Rowofholes film cooling of curved walls at low injection angles[J]. Journal of Turbomachinery, 1997, 119(3): 574579. [8]KOC I, PARMAKSIZOGLU C, CAKAN M. Numerical investigation of film cooling effectiveness on the curved surface[J]. Energy Conversion and Management, 2006, 47(9/10): 12311246. [9]PATIL S, ABRAHAM S, TAFTI D, et al. Experimental and numerical investigation of convective heat transfer in a gas turbine can combustor[J]. Journal of Turbomachinery, 2011, 133(1): 011028. [10]PATIL S, SEDALOR T, TAFTI D, et al. Study of flow and convective heat transfer in a simulated scaled up low emission annular combustor[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(3): 031010. [11]GOMEZ R D, KUMAR V, EKKAD S, et al. Flow field and liner heat transfer for a model annular combustor equipped with radial swirlers[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA,2014: 3436. [12]CARMACK A, EKKAD S, KIM Y, et al. Comparison of flow and heat transfer distributions in a can combustor for radial and axial swirlers under cold flow conditions[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(3): 031012. [13]WURM B, SCHULZ A, BAUER H J. A new test facility for investigating the interaction between swirl flow and wall cooling films in combustors[C]∥Proceeding of ASME TURBO EXPO. Orlando: ASME,2009: 59961. [14]WURM B, SCHULZ A, BAUER H J, et al. Cooling efficiency for assessing the cooling performance of an effusion cooled combustor liner[C]∥Proceeding of ASME TURBO EXPO. San Antonio: ASME, 2013: 94304. [15]WURM B, SCHULZ A, BAUER H J, et al. Impact of swirl flow on the penetration behaviour and cooling performance of a starter cooling film in modern lean operating combustion chambers[C]∥Proceeding of ASME TURBO EXPO. Dusseldorf: ASME,2014: 25520. [16]ANDREINI A, BECCHI R, FACCHINI B, et al. Adiabatic effectiveness and flow field measurements in a realistic effusion cooled lean burn combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031506. [17]ANDREINI A, FACCHINI B, BECCHI R, et al. Effect of slot injection and effusion array on the liner heat transfer coefficient of a scaled leanburn combustor with representative swirling flow[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(4): 041501. [18]ANDREINI A, SOGHE R D, FACCHINI B, et al. Local source based CFD modeling of effusion cooling holes: Validation and application to an actual combustor test case[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(1): 011506. [19]ANDREINI A, FACCHINI B, INSINNA M, et al. Hybird RansLes modeling of a hot streak generator oriented to the study of combustorturbine interaction[C]∥Proceeding of ASME TURBO EXPO. Montreal: ASME,2015: 42402. |
[1] | 赵子任1, 杜世昌1, 黄德林1, 任斐2, 梁鑫光2. 多工序制造系统暂态阶段产品质量#br# 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报, 2017, 51(10): 1166-1173. |
[2] | 周鹏辉, 马红占, 陈东萍, 陈梦月, 褚学宁. 基于模糊随机故障模式与影响分析的#br# 产品再设计模块识别[J]. 上海交通大学学报, 2017, 51(10): 1189-1195. |
[3] | 李昌玺1, 2, 周焰1, 林菡3, 李灵芝1, 郭戈1. 基于MIMOFNN模型的弹道导弹目标#br# 时空序贯融合识别方法[J]. 上海交通大学学报, 2017, 51(9): 1138-. |
[4] | 冯明月, 何明浩, 韩俊, 郁春来. 基于协方差拟合旋转不变子空间信号参数#br# 估计算法的高分辨到达角估计[J]. 上海交通大学学报, 2017, 51(9): 1145-. |
[5] | 杨平1,盛杰1,王禹程2,李柱永1,金之俭1,洪智勇1. YBa2Cu3O7δ超导带材非均匀性 对失超传播特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(9): 1090-1096. |
[6] | 王星, 周一鹏, 田元荣, 陈游, 周东青, 贺继渊. 基于改进遗传算法和SinChirplet原子的调频#br# 雷达信号稀疏分解[J]. 上海交通大学学报, 2017, 51(9): 1124-1130. |
[7] | 张良俊1, 2, 李晓慈1, 吴静怡1, 蔡爱峰1. 大型空间展开机构微重力环境模拟#br# 悬吊装置热结构耦合分析[J]. 上海交通大学学报, 2017, 51(8): 954-961. |
[8] | 夏海亮1, 2, 刘亚坤1, 2, 刘全桢3, 刘宝全3, 傅正财1, 2. 长持续时间雷电流分量作用下电极形状#br# 对金属烧蚀特性的影响[J]. 上海交通大学学报, 2017, 51(8): 903-908. |
[9] | 谷家扬, 谢玉林, 陶延武, 黄祥宏, 吴介. 新型浮式钻井生产储油平台#br# 涡激运动数值模拟及试验研究 [J]. 上海交通大学学报, 2017, 51(7): 878-885. |
[10] | 林达, 朱益佳, 魏小栋, 王志宇, 张武高. 喷油参数对聚甲氧基二甲醚/柴油发动机燃烧及其#br# 颗粒物排放的影响[J]. 上海交通大学学报, 2017, 51(7): 787-795. |
[11] | 孟庆阳1, 阎威武1, 胡勇1, 程建林1, 陈世和2, 张曦2. 基于子空间方法的超超临界机组#br# 过热蒸汽系统模型辨识[J]. 上海交通大学学报, 2017, 51(6): 672-678. |
[12] | 蒋华军a, 蔡艳a, b, 李超豪a, 李芳a, b, 华学明a, b. 基于改进Sobel算法的焊缝X射线图像#br# 气孔识别方法[J]. 上海交通大学学报, 2017, 51(6): 665-671. |
[13] | 董冠华,殷勤,殷国富,向召伟. 机床结合部耦合动刚度的辨识与建模[J]. 上海交通大学学报(自然版), 2015, 49(09): 1263-1434. |
[14] | 谢启江,余海东. 硬岩掘进机刀盘载荷与撑靴接触界面刚度的耦合关系[J]. 上海交通大学学报(自然版), 2015, 49(09): 1269-1275. |
[15] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||