J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1114-1124.doi: 10.1007/s12204-023-2654-3
• Automation & Computer Technologies • Previous Articles Next Articles
蒋伊琳1,张怡龙1,张芳园2
Received:2022-10-11
Accepted:2023-02-21
Online:2025-11-21
Published:2023-10-24
CLC Number:
JIANG Yilin, ZHANG Yilong, ZHANG Fangyuan. Infrared Single Pixel Imaging Based on Generative Adversarial Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1114-1124.
| [1] ZHANG Z J, LIU L, LI X R, et al. Compressed sensing for rapid IR imaging [C]//IET Colloquium on Millimetre-Wave and Terahertz Engineering & Technology 2016. London: IET, 2016: 1-6. [2] UZELER H, CAKIR S, AYTAÇ T. Image reconstruction for single detector rosette scanning systems based on compressive sensing theory [J]. Optical Engineering, 2016, 55(2): 023108. [3] XIE C, LU X, ZENG W. Single frame super-resolution reconstruction based on sparse representation [J]. Journal of Southeast University (English Edition), 2016, 32(2): 177-182. [4] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. [5] SHAPIRO J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. [6] WANG L, ZHAO S M. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform [J]. Photonics Research, 2016, 4(6): 240. [7] ZHANG Z B, LIU S J, PENG J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J]. Optica, 2018, 5(3): 315. [8] ROUSSET F, DUCROS N, FARINA A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging [J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 36-46. [9] TSAI R, HUANG T S. Multiframe image restoration and registration [J]. Computer Vision and Image Processing, 1984, 1: 317-339. [10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645. [11] ZHANG D, HE J Z. Hybrid sparse-representation-based approach to image super-resolution reconstruction [J]. Journal of Electronic Imaging, 2017, 26(2): 023008. [12] TAN J, TAO Z Q, CAO A H, et al. An edge-preserving iterative back-projection method for image super-resolution [J]. Proceedings of SPIE, 2016, 10033: 844-849. [13] DAVENPORT M A, WAKIN M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J]. IEEE Transactions on Information Theory, 2010, 56(9): 4395-4401. [14] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. [15] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. [16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140. [17] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481. [18] AN Z Y, ZHANG J Y, SHENG Z Y, et al. RBDN: Residual bottleneck dense network for image super-resolution [J]. IEEE Access, 2021, 9: 103440-103451. [19] ZHU Y, GEIß C, SO E. Image super-resolution with dense-sampling residual channel-spatial attention networks for multi-temporal remote sensing image classification [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102543. [20] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [M]//Computer vision - ECCV 2018. Cham: Springer, 2018: 294-310. [21] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387. [22] AYAS S, EKINCI M. Microscopic image super resolution using deep convolutional neural networks [J]. Multimedia Tools and Applications, 2020, 79(21): 15397-15415. [23] WANG Y F, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 977-97709. [24] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883. [25] CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2848-2857. [26] SAJJADI M S M, SCHÖLKOPF B, HIRSCH M. EnhanceNet: single image super-resolution through automated texture synthesis [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4501-4510. [27] WANG X T, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 606-615. |
| [1] | CHEN Cheng, PENG Pan, TAO Wei, ZHAO Hui. Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1073-1084. |
| [2] | TAHIR Rizwana, CAI Yunze. Multi-Human Pose Estimation by Deep Learning-Based Sequential Approach for Human Keypoint Position and Human Body Detection [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1103-1113. |
| [3] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang. Research Advances on Non-Line-of-Sight Imaging Technology [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
| [4] | YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen. Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
| [5] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan. Lightweight Human Pose Estimation Based on Multi-Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
| [6] | ZHOU Bowei, XING Guanyu, LIU Yanli. Rail Line Detection Algorithm Based on Improved CLRNet [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934. |
| [7] | DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze. MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951. |
| [8] | LI Shanshan, GUO Yali, HUANG Jiaxin, GAO Ruoyun. Fast Attack Algorithm for JPEG Image Encryption with Block Position Shuffle [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 976-987. |
| [9] | LIU Biao, LIU Guangyu, FENG Wei, WANG Shuai, ZHOU Bao, ZHAO Enming. Undecimated Dual-Tree Complex Wavelet Transform and Fuzzy Clustering-Based Sonar Image Denoising Technique [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 998-1008. |
| [10] | LIU Chen, LI Wenfa, XU Yunwen, LI Dewei. CenterRCNN: Two-Stage Anchor-Free Object Detection Using Center Keypoint-Based Region Proposal Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1028-1036. |
| [11] | ZHANG Guo, CHEN Tao, WANG Jianping. CSC-YOLO: An Image Recognition Model for Surface Defect Detection of Copper Strip and Plates [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1037-1049. |
| [12] | JIANG Wenbo, ZHENG Hangbin, BAO Jinsong. Novel Multi-Step Deep Learning Approach for Detection of Complex Defects in Solar Cells [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
| [13] | YANG Zhuang, LI Zhaofei, WANG Jihua, WEI Xudong, ZHANG Yijie. Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
| [14] | Shao Dangguo, Yang Yuanbiao, Ma Lei, Yi Sanli. CT-MFENet: Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 668-682. |
| [15] | Xiao Xianzi, Miao Yubin. Heart Rate Sensing Method Based on Short Millimeter Wave Radar Sequence [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 683-692. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||