Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (Sup. 1): 85-94.doi: 10.1007/s12204-018-2027-5
Previous Articles Next Articles
SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tangbin (夏唐斌)
Online:
2018-12-28
Published:
2018-12-26
Contact:
XIA Tangbin (夏唐斌)
E-mail:xtbxtb@sjtu.edu.cn
CLC Number:
SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tangbin (夏唐斌). Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94.
[1] | FENG D L, XIAO M Q, LIU Y X, et al. A kernelprincipal component analysis-based degradation modeland remaining useful life estimation for the turbofanengine [J]. Advances in Mechanical Engineering, 2016,8(5): 1-13. |
[2] | XIA T B, DONG Y F, XIAO L, et al. Recent advancesin prognostics and health management for advancedmanufacturing paradigms [J]. Reliability Engineeringand System Safety, 2018, 178: 255-268. |
[3] | NIETO P J G, GARC′IA-GONZALO E, LASHERASF S, et al. Hybrid PSO-SVM-based method for forecastingof the remaining useful life for aircraft enginesand evaluation of its reliability [J]. Reliability Engineeringand System Safety, 2015, 138: 219-231. |
[4] | NG S S Y, XING Y J, TSUI K L. A naive Bayes modelfor robust remaining useful life prediction of lithiumionbattery [J]. Applied Energy, 2014, 118: 114-123. |
[5] | DEUTSCH J, HE D. Using deep learning-based approachto predict remaining useful life of rotating components[J]. IEEE Transactions on Systems, Man, andCybernetics: Systems, 2018, 48(1): 11-20. |
[6] | BABU G S, ZHAO P L, LI X L. Deep convolutionalneural network based regression approach for estimationof remaining useful life [C]//International Conferenceon Database Systems for Advanced Applications.Dallas, USA: LNCS, 2016: 214-228. |
[7] | ZHANG Y Z, XIONG R, HE H W, et al. Long shorttermmemory recurrent neural network for remaininguseful life prediction of lithium-ion batteries [J]. IEEETransactions on Vehicular Technology, 2018, 67(7):5695-5705. |
[8] | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Longshort-term memory network for remaining useful lifeestimation [C]//International Conference on Prognosticsand Health Management. Florida, USA: IEEE,2017: 88-95. |
[9] | ZEYER A, DOETSCH P, VOIGTLAENDER P, et al.A comprehensive study of deep bidirectional LSTMRNNs for acoustic modeling in speech recognition[C]//International Conference on Acoustics, Speechand Signal Processing. New Orleans, USA: IEEE, 2017:2462-2466. |
[10] | ALTHELAYA K A, EL-ALFY E S M, MOHAMMEDS. Evaluation of bidirectional LSTM for short- andlong-term stock market prediction [C]//InternationalConference on Information and Communication Systems.Irbid, Jordan: IEEE, 2018: 151-156. |
[11] | JOLLIFFE I T, CADIMA J. Principal componentanalysis: A review and recent developments [J].Philosophical Transactions of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2016,374(2065): 20150202. |
[12] | ZHAO M B, ZHANG Z, CHOW T W, S et al. A generalsoft label based linear discriminant analysis forsemi-supervised dimensionality reduction [J]. NeuralNetworks, 2014, 55: 83-97. |
[13] | HINTON G E, SALAKHUTDINOV R R. Reducingthe dimensionality of data with neural networks [J].Science, 2006, 313(5786): 504-507. |
[14] | WANG Y S, YAO H X, ZHAO S C, et al. Auto-encoderbased dimensionality reduction [J]. Neurocomputing,2016, 184: 232-242. |
[15] | SAXENA A, GOEBEL K, SIMON D, et al. Damagepropagation modeling for aircraft engine run-to-failuresimulation [C]//International Conference on Prognosticsand Health Management. Denver, Colorado, USA:IEEE, 2008: 1-9. |
[16] | WU Y T, YUAN M, DONG S P, et al. Remaininguseful life estimation of engineered systems usingvanilla LSTM neural networks [J]. Neurocomputing,2018, 275: 167-179. |
[17] | ARCOS-GARC′IA ′ A, ′ALVAREZ-GARC′IA J A,SORIA-MORILLO L M. Deep neural network for trafficsign recognition systems: An analysis of spatialtransformers and stochastic optimisation methods [J].Neural Networks, 2018, 99: 158-165. |
[18] | HEIMES F O. Recurrent neural networks for remaininguseful life estimation [C]//International Conferenceon Prognostics and Health Management. Denver,Colorado, USA: IEEE, 2008: 59-64. |
[1] | SUN Zhiwei, HU Xiong, DONG Kai, SUN Dejian, LIU Yang. RUL Prediction Method for Quay Crane Hoisting Gearbox Bearing Based on LSTM-CAPF Framework [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 352-360. |
[2] | SU Yulin, LIAN Guan, ZHANG Dacheng. Equivalent Circuit Model-Based Prognostics for Micro Direct Methanol Fuel Cell Under Dynamic Operating Conditions [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1575-1584. |
[3] | WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun. Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1037-1045. |
[4] | ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015. |
[5] | WANG Yalun, ZHOU Tao, CHEN Zhong, WANG Yi, QUAN Hao. Stepwise Inertial Intelligent Control of Wind Power for Frequency Regulation Based on Stacked Denoising Autoencoder and Deep Neural Network [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1477-1491. |
[6] | SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng. A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 564-575. |
[7] | YUAN Ming, LIU Qun, SUN Haichao, TAN Hongsheng. A Heterogeneous Network Representation Method Based on Variational Inference and Meta-Path Decomposition [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 586-597. |
[8] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[9] | XIAO Lei (肖雷), XIA Tangbin (夏唐斌). Opportunistic Replacement Optimization for Multi-Component System Based on Programming Theory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 77-84. |
[10] | DU Dangboa,HU Changhuaa,SI Xiaoshenga,ZHANG Zhengxina,ZHANG Weib. Remaining Useful Life Prediction for Hybrid Degradation System [J]. Journal of Shanghai Jiaotong University, 2017, 51(7): 886-891. |
[11] | LIAO Wen-Zhu-1, PAN 尔Shun-2, WANG Ying-2, XI Li-Feng-2. Research of Predicting Machine’s Remaining Useful Life Based on Statistical Pattern Recognition and Auto-regressive and Moving Average Model [J]. Journal of Shanghai Jiaotong University, 2011, 45(07): 1000-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||