Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (Sup. 1): 77-84.doi: 10.1007/s12204-018-2026-6
Previous Articles Next Articles
XIAO Lei (肖雷), XIA Tangbin (夏唐斌)
Online:
2018-12-28
Published:
2018-12-26
Contact:
XIAO Lei (肖雷)
E-mail:leixiao211@163.com
[1] | JARDINE A K S, LIN D M, BANJEVIC D. A reviewon machinery diagnostics and prognostics implementingcondition-based maintenance [J]. Mechanical Systemsand Signal Processing, 2006, 20(7): 1483-1510. |
[2] | XIA T B, DONG Y F, XIAO L, et al. Recent advancesin prognostics and health management for advancedmanufacturing paradigms [J]. Reliability Engineeringand System Safety, 2018, 178: 255-268. |
[3] | BARALDI P, MAIO F D, AL-DAHIDI S, et al. Predictionof industrial equipment remaining useful life byfuzzy similarity and belief function theory [J]. ExpertSystems with Applications, 2017, 83: 226-241. |
[4] | AL-DAHIDI S, MAIO F D, BARALDI P, et al. Remaininguseful life estimation in heterogeneous fleetsworking under variable operating conditions [J]. ReliabilityEngineering and System Safety, 2016, 156: 109-124. |
[5] | TIAN Z G, WONG L, SAFAEI N. A neural networkapproach for remaining useful life prediction utilizingboth failure and suspension histories [J]. MechanicalSystems and Signal Processing, 2010, 24(5): 1542-1555. |
[6] | TAO F L, YANG C, CHENG Y J, et al. Machine componenthealth prognostics with only truncated historiesusing geometrical metric approach [J]. MechanicalSystems and Signal Processing, 2018, 113: 168-179. |
[7] | WANG D, YANG F F, TSUI K L, et al. Remaininguseful life prediction of lithiumion batteries basedon spherical cubature particle filter [J]. IEEE Transactionson Instrumentation and Measurement, 2016,65(6): 1282-1291. |
[8] | SI X S. An adaptive prognostic approach via nonlineardegradation modeling: Application to battery data[J]. IEEE Transactions on Industrial Electronics, 2015,62(8): 5082-5096. |
[9] | XIAO L, CHEN X H, ZHANG X H, et al. A novelapproach for bearing remaining useful life estimationunder neither failure nor suspension histories condition[J]. Journal of Intelligent Manufacturing, 2017, 28(8):1893-1914. |
[10] | TIAN Z G, JIN T D, WU B R, et al. Condition basedmaintenance optimization for wind power generationsystems under continuous monitoring [J]. RenewableEnergy, 2011, 36(5): 1502-1509. |
[11] | XIAO L, SONG S L, CHEN X H, et al. Joint optimizationof production scheduling and machine group preventivemaintenance [J]. Reliability Engineering andSystem Safety, 2016, 146: 68-78. |
[12] | SHAFIEE M, FINKELSTEIN M, B′ERENGUER C.An opportunistic condition-based maintenance policyfor offshore wind turbine blades subjected to degradationand environmental shocks [J]. Reliability Engineeringand System Safety, 2015, 142: 463-471. |
[13] | XIA T B, TAO X Y, XI L F. Operation process rebuilding(OPR)-oriented maintenance policy for changeablesystem structures [J]. IEEE Transactions on AutomationScience and Engineering, 2017, 14(1): 139-148. |
[14] | ZHANG C, GAO W, GUO S, et al. Opportunisticmaintenance for wind turbines considering imperfect,reliability-based maintenance [J]. Renewable Energy,2017, 103: 606-612. |
[15] | SARKER B R, FAIZ T I. Minimizing maintenancecost for offshore wind turbines following multi-level opportunisticpreventive strategy [J]. Renewable Energy,2016, 85: 104-113. |
[16] | ABDOLLAHZADEH H, ATASHGAR K, ABBASI M.Multi-objective opportunistic maintenance optimizationof a wind farm considering limited number ofmaintenance groups [J]. Renewable Energy, 2016, 88:247-261. |
[17] | YILDIRIMM, GEBRAEEL N Z, SUN X A. Integratedpredictive analytics and optimization for opportunisticmaintenance and operations in wind farms [J]. IEEETransactions on Power Systems, 2017, 32(6): 4319-4328. |
[18] | VERBERT K, SCHUTTER B D, BABUˇSKA R.Timely condition-based maintenance planning formulti-component systems [J]. Reliability Engineeringand System Safety, 2017, 159: 310-321. |
[19] | ZHANG X H, KANG J S, JIN T D. Degradation modelingand maintenance decisions based on BayesianBelief Networks [J]. IEEE Transactions on Reliability,2014, 63(2): 620-633. |
[20] | NECTOUX P, GOURIVEAU R, MEDJAHER K, etal. PRONOSTIA: An experimental platform for bearingsaccelerated degradation tests [C]//IEEE InternationalConference on Prognostics and Health Management.Denver, Colorado, USA: IEEE, 2012: 1-8. |
[1] | SUN Zhiwei, HU Xiong, DONG Kai, SUN Dejian, LIU Yang. RUL Prediction Method for Quay Crane Hoisting Gearbox Bearing Based on LSTM-CAPF Framework [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 352-360. |
[2] | WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun. Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1037-1045. |
[3] | ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015. |
[4] | LIU Gehui (刘葛辉), LONG Xiangyu (龙翔宇), TONG Shuo (仝硕), ZHANG Rui (张瑞), CHEN Shaokuan* (陈绍宽) . Optimum Consecutive Preventive Maintenance Scheduling Model Considering Reliability [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 490-495. |
[5] | HU Jiawen1,JIANG Zuhua1,HOU Wenrui2,PEI Haiyan1,WANG Haili1,SUN Xiaoming1. Preventive Maintenance of a Single Machine System with Batch Production Pattern under Time-Varying Workload [J]. Journal of Shanghai Jiaotong University, 2018, 52(3): 332-339. |
[6] | PARK Minjae1, JUNG Ki Mun2, PARK Dong Ho3*. Optimal Age Replacement Policy with Replacement Occurrence While the Warranty is in Effect [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 374-379. |
[7] | CHENG Guoqing1,2,ZHOU Binghai1,LI Ling2. Optimal Order-Replacement Policy for a Deteriorating System Based on Delayed Geometric Process [J]. Journal of Shanghai Jiaotong University, 2015, 49(08): 1101-1107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||