Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (Sup. 1): 8-17.doi: 10.1007/s12204-018-2017-7
Previous Articles Next Articles
LIU Ke (刘柯), LI Ke (李珂), XU Dejun (许得隽), LIN He (林赫), GUAN Bin (管斌), CHEN Ting (陈婷), HUANG Zhen (黄震)
Published:
2018-12-26
Contact:
GUAN Bin (管斌)
E-mail:guanbin@sjtu.edu.cn
CLC Number:
LIU Ke (刘柯), LI Ke (李珂), XU Dejun (许得隽), LIN He (林赫), GUAN Bin (管斌), CHEN Ting (陈婷), HUANG Zhen (黄震). Catalytic Combustion of Lean Methane Assisted by Electric Field over Pd/Co3O4 Catalysts at Low Temperature[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 8-17.
[1] | GOYAL P, SIDHARTHA. Present scenario of air quality in Delhi: A case study of CNG implementation [J].Atmospheric Environment, 2003, 37(38): 5423-5431. |
[2] | D′IAZ E, FERN′ANDEZ J, ORD′O ?NEZ S, et al. Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air [J].Ecological Indicators, 2012, 18: 126-130. |
[3] | FINO D, RUSSO N, SARACCO G, et al. Supported Pd-perovskite catalyst for CNG engines’ exhaust gas treatment [J]. Progress in Solid State Chemistry, 2007,35(2): 501-511. |
[4] | YOSHIDA H, NAKAJIMA T, YAZAWA Y, et al. Support effect on methane combustion over palladium catalysts[J]. Applied Catalysis B: Environmental, 2007,71(1): 70-79. |
[5] | COLUSSI S, TROVARELLI A, CRISTIANI C, et al.The influence of ceria and other rare earth promoters on palladium-based methane combustion catalysts [J].Catalysis Today, 2012, 180(1): 124-130. |
[6] | YUE B H, ZHOU R X, WANG Y J, et al. Study of the methane combustion and TPR/TPO properties of Pd/Ce–Zr–M/Al2O3, catalysts with M=Mg, Ca, Sr,Ba [J]. Journal of Molecular Catalysis A: Chemical,2005, 238(1): 241-249. |
[7] | SHEN J, HAYES R E, WU X X, et al. 100?Temperature reduction of wet methane combustion: Highly active Pd–Ni/Al2O3 catalyst versus Pd/NiAl2O4 [J].ACS Catalysis, 2015, 5: 2916-2920. |
[8] | LIOTTA L F, CARLO G D, PANTALEO G, et al. Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity [J]. Catalysis Communications,2007, 8(3): 299-304. |
[9] | YUE B H, ZHOU R X, WANG Y J, et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts [J]. Applied Catalysis A: General, 2005, 295(1): 31-39. |
[10] | CHENAKIN S P, MELAET G, SZUKIEWICZ R,et al. XPS study of the surface chemical state of a Pd/(SiO2+TiO2) catalyst after methane oxidation and SO2, treatment [J]. Journal of Catalysis, 2014, 312(2):1-11. |
[11] | GUO X N, ZHI G J, YAN X Y, et al. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts [J]. Catalysis Communications,2011, 12(10): 870-874. |
[12] | STROBEL R, GRUNWALDT J D, CAMENZIND A,et al. Flame-made alumina supported Pd–Pt nanoparticles:Structural properties and catalytic behavior in methane combustion [J]. Catalysis Letters, 2005,104(1/2): 9-16. |
[13] | SPECCHIA S, CONTI F, SPECCHIA V. Kinetic studies on Pd/CexZr1?xO2 catalyst for methane combustion[J]. Industrial & Engineering Chemistry Research,2010, 49(21): 11101-11111. |
[14] | OSHIMA K, SHINAGAWA T, NOGAMI Y, et al. Low temperature catalytic reverse water gas shift reaction assisted by an electric field [J]. Catalysis Today, 2014,232: 27-32. |
[15] | SUGIURA K, OGO S, IWASAKI K, et al. Lowtemperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system [J].Scientific Reports, 2016, 9: 25154. |
[16] | SEKINE Y, HARAGUCHI M, TOMIOKA M, et al.Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. [J].Journal of Physical Chemistry A, 2010, 114(11): 3824-3833. |
[17] | SEKINE Y, TOMIOKA M, MATSUKATA M, et al.Catalytic degradation of ethanol in an electric field [J].Catalysis Today, 2009, 146(1): 183-187. |
[18] | YABE T, KAMITE Y, SUGIURA K, et al. Lowtemperature oxidative coupling of methane in an electric field using carbon dioxide over Ca-doped LaAlO3 perovskite oxide catalysts [J]. Journal of CO2 Utilization,2017, 20: 156-162. |
[19] | YABE T, MITARAI K, OSHIMA K, et al. Lowtemperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts[J]. Fuel Processing Technology, 2017, 158: 96-103. |
[20] | OSHIMA K, TANAKA K, YABE T, et al. Oxidative coupling of methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low external temperature[J]. Fuel, 2013, 107(9): 879-881. |
[21] | KIM T, JO S, SONG Y H, et al. Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges [J]. Applied Energy, 2014,113(1): 1692-1699. |
[22] | OSHIMA K, SHINAGAWA T, HARAGUCHI M, et al. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field [J]. International Journal of Hydrogen Energy, 2013, 38(7):3003-3011. |
[23] | SEKINE Y, HARAGUCHI M, MATSUKATA M, et al. Low temperature steam reforming of methane over metal catalyst supported on CexZr1?xO2 in an electric field [J]. Catalysis Today, 2011, 171(1): 116-125. |
[24] | OSHIMA K, SHINAGAWA T, SEKINE Y. Methane conversion assisted by plasma or electric field [J]. Journal of the Japan Petroleum Institute, 2013, 56(1): 11-21. |
[25] | GIRAUDON J M, ELHACHIMI A, LECLERCQ G. Catalytic oxidation of chlorobenzene over Pd/perovskites [J]. Applied Catalysis B: Environmental,2008, 84(1): 251-261. |
[26] | NARAYANAPPA M, DASIREDDY V D B C,FRIEDRICH H B. Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2?δ) catalysts[J]. Applied Catalysis A: General, 2012, 447/448: 135-143. |
[27] | ZAFEIRATOS S, DINTZER T, TESCHNER D, et al.Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity [J].Journal of Catalysis, 2010, 269(2): 309-317. |
[28] | TANG Y, MA L, DOU J, et al. Transition of surface phase of cobalt oxide during CO oxidation [J]. Physical Chemistry Chemical Physics, 2018, 20: 6440-6449. |
[29] | TRIVEDI S, PRASAD R. Reactive calcination route for synthesis of active Mn–Co3O4, spinel catalysts for abatement of CO–CH4, emissions from CNG vehicles[J]. Journal of Environmental Chemical Engineering,2016, 4: 1017-1028. |
[30] | PU′ERTOLAS B, SMITH A, V′AZQUEZ I, et al. The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure [J]. Chemical Engineering Journal, 2013, 229(4): 547-558. |
[31] | TANG X L, GAO F Y, XIANG Y, et al. Effect of potassium-precursor promoters on catalytic oxidation activity of Mn-CoOx catalysts for NO removal [J].Industrial & Engineering Chemistry Research, 2015,54(37): 9116-9123. |
[32] | LIOTTA L F, CARLO G D, PANTALEO G, et al.Pd/Co3O4, catalyst for CH4 emissions abatement:Study of SO2 poisoning effect [J]. Topics in Catalysis,2007, 42/43: 425-428. |
[33] | KANG M, SONG M W, LEE C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Applied Catalysis A: General, 2003, 251(1):143-156. |
[34] | LI X, ZHANG C, HE H, et al. Promotion effect of residual K on the decomposition of N2O over cobalt–cerium mixed oxide catalyst [J]. Catalysis Today, 2007,126(3): 449-455. |
[35] | LIOTTA L F, CARLO G D, PANTALEO G, et al.Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity[J]. Catalysis Communications, 2005, 6(5): 329-336. |
[36] | OSAKOO N, HENKEL R, LOIHA S, et al. Palladiumpromoted cobalt catalysts supported on silica prepared by impregnation and reverse micelle for Fischer–Tropsch synthesis [J]. Applied Catalysis A: General,2013, 464/465: 269-280. |
[37] | XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60. |
[38] | ERCOLINO G, STELMACHOWSKI P, GRZYBEK G, et al. Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane [J]. Applied Catalysis B: Environmental,2017, 206: 712-725. |
[39] | WANG Y F, ZHANG C B, LIU F D, et al. Welldispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene [J]. Applied Catalysis B: Environmental, 2013, 142(10): 72-79. |
[40] | DACQUIN J P, DUJARDIN C, GRANGER P. Surface reconstruction of supported Pd on LaCoO3: Consequences on the catalytic properties in the decomposition of N2O [J]. Journal of Catalysis, 2008, 253(1):37-49. |
[41] | LI J H, LIANG X, XU S C, et al. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature [J]. Applied Catalysis B:Environmental, 2009, 90(1): 307-312. |
[42] | JODLOWSKI P J, JE?DRZEJCZYK R J, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface [J]. Journal of Catalysis,2017, 350: 1-12. |
[43] | CAO C, BOURANE A, SCHLUP J R, et al. In situ IR investigation of activation and catalytic ignition of methane over Rh/Al2O3 catalysts [J]. Applied Catalysis A: General, 2008, 344(1): 78-87. |
[44] | DEVENER B V, ANDERSON S L, SHIMIZU T, et al.In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition [J]. Journal of Physical Chemistry C, 2015, 80033(80138): 20632-20639. |
[45] | CHLEBDA D K, JODWSKI P J, JE?DRZEJCZYK R J, et al. Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy[J]. Spectrochim Acta A: Mol Biomol Spectrosc,2018, 192: 202-210. |
[46] | SCHMAL M, SOUZA M M V M, ALEGRE V V,et al. Methane oxidation—Effect of support, precursor and pretreatment conditions—In situ reaction XPS and DRIFT [J]. Catalysis Today, 2006, 118(3): 392-401. |
[47] | DAVYDOV A A, ROCHESTER C H. Infrared spectroscopy of adsorbed species on the surface of transition metal oxides [M]. New York, USA: John Wiley &Sons, 1984. |
[48] | HOFLUND G B, LI Z H. Surface characterization study of a Pd/Co3O4 methane oxidation catalyst [J].Applied Surface Science, 2006, 253(5): 2830-2834. |
[49] | JODLOWSKI P J, JE?DRZEJCZYK R J, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface [J]. Journal of Catalysis,2017, 350: 1-12. |
[50] | HURTADO P, ORD′O?NEZ S, SASTREH, et al. Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions [J]. Applied Catalysis B: Environmental, 2004, 51(4): 229-238. |
[51] | KAZANSKY V B, SERYKH A I, PIDKO E A. DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions:Methane adsorption [J]. Journal of Catalysis, 2004,225(2): 369-373. |
[52] | STEFANOV P, TODOROVA S, NAYDENOV A, et al. On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane [J].Chemical Engineering Journal, 2015, 266: 329-338. |
[1] | WU Huaina, FENG Donglin, LIU Yuan, LAN Ganzhou, CHEN Renpeng. Anti-Uplift Portal Frame in Control of Underlying Tunnel Deformation Induced by Foundation Pit Excavation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1227-1237. |
[2] | WU Guanlun, SHI Guanglin. Design and Realization of Continuum Manipulator Based on Coupling of Double Parallel Mechanism [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 809-817. |
[3] | SHI Jichao1 (石继超), WANG Ziheng2 (王子恒), ZHAO Xianchao1 (赵现朝), ZHANG Zhinan1∗ (张执南). Target Detection Algorithm Based On Human Judge Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 660-670. |
[4] | LIU Dasheng∗ (刘大生), YAN Guozheng (颜国正). Biomechanical Analysis of a Radial Expansion Mechanism of Intestinal Robot Coupling with Hyperelastic Intestinal Wall [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 552-560. |
[5] | ZHAO Zhongliang, LI Hao, LAI Jiang, YANG Haiyong, WANG Xiaobing, LI Yuping. Aerodynamic Characteristics of a Missile Model with Direct Force and Aerodynamic Force Compound Control Technology [J]. Air & Space Defense, 2022, 5(3): 1-9. |
[6] | LIU Hao, SUN Shifeng, LI Xiaojia, HAO Jingbin, YANG Haifeng. Microstructure and Properties of CoCrFeMnNiMox High-Entropy Alloy Coating by Laser Cladding [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1675-1687. |
[7] | HE Qingbo,JIANG Tianxi. Can AI Be Realized by Manipulating Waves? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 1-2. |
[8] | CHENG Weizheng,DENG Tao,DING Wenjiang. What Is the Role Played by Hydrogen in Life? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 7-9. |
[9] | LIU Ze,YANG Guoyuan. Why Do People Age: Aging Mechanism of Organism [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 30-31. |
[10] | YANG Haijun. What Is the Nature of Higgs Field? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 118-120. |
[11] | XIE Yong, LIU Chongfei, JIA Jianjun, DAI Jiansheng. Design of Fast Steering Mirror Based on Displacement Amplification Mechanism [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1142-1150. |
[12] | YUAN Ming, LIU Qun, SUN Haichao, TAN Hongsheng. A Heterogeneous Network Representation Method Based on Variational Inference and Meta-Path Decomposition [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 586-597. |
[13] | SHAN Rui (山蕊), JIANG Lin (蒋林), WU Haoyue (吴昊玥), HE Feilong (贺飞龙), LIU Xinchuang (刘新闯). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 511-521. |
[14] | LAI Zhiqiang, JIANG Enhui, ZHAO Lianjun, ZHOU Wei, TIAN Wenxiang, MA Gang. Review of Movement and Accumulation Characteristics of Granular Column Collapse [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 421-433. |
[15] | CAI Yunze, ZHANG Yanjun. Infrared Dim and Small Target Detection Based on Dual-Channel Feature-Enhancement Integrated Attention Network [J]. Air & Space Defense, 2021, 4(4): 14-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||