J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 121-129.doi: 10.1007/s12204-023-2614-y
• Medicine-Engineering Interdisciplinary • Previous Articles
ZHAO Yinjie1 (赵寅杰), HOU Runpingg1 (侯润萍), ZENG Wanqin2 (曾琬琴), QIN Yulei1 (秦玉磊), SHEN Tianle2 (沈天乐), XU Zhiyong2 (徐志勇), FU Xiaolong2* (傅小龙), SHEN Hongbin1* (沈红斌)
Received:
2022-08-08
Accepted:
2022-11-28
Online:
2025-01-28
Published:
2025-01-28
CLC Number:
ZHAO Yinjie1 (赵寅杰), HOU Runpingg1 (侯润萍), ZENG Wanqin2 (曾琬琴), QIN Yulei1 (秦玉磊), SHEN Tianle2 (沈天乐), XU Zhiyong2 (徐志勇), FU Xiaolong2* (傅小龙), SHEN Hongbin1* (沈红斌). Positional Information is a Strong Supervision for Volumetric Medical Image Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 121-129.
[1] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: A review [J]. Artificial Intelligence Review, 2021, 54(1): 137-178. [2] ZHANG S, XU J C, CHEN Y C, et al. Revisiting 3D context modeling with supervised pre-training for universal lesion detection in CT slices [M]//Medical image computing and computer assisted intervention—MICCAI 2020. Cham: Springer, 2020: 542-551. [3] JING L L, TIAN Y L. Self-supervised visual feature learning with deep neural networks: A survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. [4] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]//37th International Conference on Machine Learning. Vienna: IMLS, 2020: 1597-1607. [5] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735. [6] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap ′your own latent: A new approach to self-supervised learning [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 21271-21284. [7] WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3733-3742. [8] CHAITANYA K, ERDIL E, KARANI N, et al. Contrastive learning of global and local features for medical image segmentation with limited annotations [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 12546-12558. [9] ZENG D W, WU Y W, HU X R, et al. Positional contrastive learning for volumetric medical image segmentation [M]//Medical image computing and computer assisted intervention— MICCAI 2021. Cham:Springer, 2021: 221-230. [10] RONNEBERGER O, FISCHER P, BROX T. UNet: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computer-assisted intervention— MICCAI 2015. Cham: Springer, 2015: 234-241. [11] MILLETARI F, NAVAB N, AHMADI S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision. Stanford: IEEE,2016: 565-571. [12] C? IC?EK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation [M]//Medical image computing and computer-assisted intervention— MICCAI 2016. Cham: Springer, 2016: 424-432. [13] LOU A, GUAN S, LOEW M. DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation [C]//Medical Imaging 2021: Image Processing. Online: SPIE, 2021, 11596: 758-768. [14] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: Redesigning skip connections to exploit multiscale features in image segmentation [J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. [15] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnUNet: A self-configuring method for deep learning-based biomedical image segmentation [J]. Nature Methods, 2021, 18(2): 203-211. [16] NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 69-84. [17] DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1422-1430. [18] ZHANG R, ISOLA P, EFROS A A. Colorful image colorization [M]//Computer vision — ECCV 2016. Cham: Springer International Publishing, 2016: 649-666. [19] PATHAK D, KRAHENB ¨ UHL P, DONAHUE J, et ¨ al. Context encoders: Feature learning by inpainting [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536-2544. [20] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning [C]// 34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 18661-18673. [21] CHEN X L, HE K M. Exploring simple Siamese representation learning [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745-15753. [22] ZHOU Z W, SODHA V, RAHMAN SIDDIQUEE M M, et al. Models genesis: generic autodidactic models for 3D medical image analysis [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 384-393. [23] ZHOU Z W, SODHA V, PANG J X, et al. Models genesis [J]. Medical Image Analysis, 2021, 67: 101840. [24] ZHUANG X R, LI Y X, HU Y F, et al. Self-supervised feature learning for 3D medical images by playing a rubik’s cube [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 420-428. [25] ZHU J W, LI Y X, HU Y F, et al. Rubik’s Cube+: A self-supervised feature learning framework for 3D medical image analysis [J]. Medical Image Analysis, 2020, 64: 101746. [26] HAGHIGHI F, TAHER M R H, ZHOU Z W, et al. Transferable visual words: Exploiting the semantics of anatomical patterns for self-supervised learning [J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2857-2868. [27] YAN K, LU L, SUMMERS R M. Unsupervised body part regression via spatially self-ordering convolutional neural networks [C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1022-1025. |
[1] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[2] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[3] | BALASUBRAMANIAN S1*, NARUKA Mahaveer Singh2, TEWARI Gaurav3. Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80. |
[4] | XU Wangwang1,2 (徐旺旺), XU Liangfeng1,2 (许良凤), LIU Ninghui3(刘宁徽), LU Na3(律娜). Histological Image Diagnosis of Breast Cancer Based on Multi-Attention Convolution Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[5] | A. Sahaya Anselin Nisha1* , NARMADHA R.1 , AMIRTHALAKSHMI T. M.2,BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[6] | DING Lihui1,2(丁黎辉), FU Lijun1,3* (付立军), YANG Guang4(杨光), WAN Lin4,5 (万林), CHANG Zhijun7(常志军). Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[7] | KONG Huiyang1 (孔会扬),WANG Shuyi1* (王殊轶),ZHANG Can2 (张璨),CHEN Zan2,3 (陈赞). Augmented Reality Navigation Using Surgical Guides Versus Conventional Techniques in Pedicle Screw Placement [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[8] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[9] | ZHOU Cheng (周成), JIANG Zuhua∗ (蒋祖华). Named Entity Recognition of Design Specification Integrated with High-Quality Topic and Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[10] | YAN Congqiang1,2 (鄢丛强), GUO Zhengyun3,4 (郭正玉), CAI Yunze1,2∗∗ (蔡云泽). Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[11] | CHEN Yini(陈旖旎), JIANG Zuhua* (蒋祖华). Multi-AGVs Scheduling with Vehicle Conflict Consideration in Ship Outfitting Items Warehouse [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 492-508. |
[12] | LONARE Savita1,2* , BHRAMARAMBA Ravi2. Federated Approach for Privacy-Preserving Traffic Prediction Using Graph Convolutional Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[13] | LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[14] | SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[15] | GU Xinghai顾星海),HUA Bao(花 豹),LIU Yahui(刘亚辉),SUN Xuemin(孙学民),BAO Jinsong∗(鲍劲松). Semantic Entity Recognition and Relation Construction Method for Assembly Process Document [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||