Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (4): 534-544.doi: 10.1007/s12204-019-2087-1

Previous Articles    

Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint

Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint

SHEN Kechun (沈克纯), PAN Guang *(潘光)   

  1. (1. College of Mechanical Engineering, Henan Institute of Technology, Xinxiang 453003, Henan, China; 2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China)
  2. (1. College of Mechanical Engineering, Henan Institute of Technology, Xinxiang 453003, Henan, China; 2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China)
  • Online:2019-08-01 Published:2019-07-29
  • Contact: PAN Guang *(潘光) E-mail:panguang@nwpu.edu.cn

Abstract: An optimization framework is developed to maximize design pressure of composite cylindrical shell subjected to hydrostatic pressure. Genetic algorithm (GA) integrated with numerical analysis is used in the framework to find optimal winding pattern of the composite cylinders. As a novelty, unlike other studies only considering buckling, in this study, material failure is taken as design constraint in the optimization problem. Sensitivity analyses are performed to study the effects of design variables on the buckling pressure, material failure pressure and design pressure. Comparative study is carried out to analyze the buoyancy factors of the cylindrical shell made of metal alloys and composites. Results reveal that as the shell thickness of the cylinder increases, the material failure pressure instead of the buckling pressure determines the design pressure. It can be concluded that reliable winding pattern designs can be achieved for composite cylinders under hydrostatic pressure when the Tsai-Wu failure criterion is considered.

Key words: optimization| composites| cylindrical shell| buckling| failure

摘要: An optimization framework is developed to maximize design pressure of composite cylindrical shell subjected to hydrostatic pressure. Genetic algorithm (GA) integrated with numerical analysis is used in the framework to find optimal winding pattern of the composite cylinders. As a novelty, unlike other studies only considering buckling, in this study, material failure is taken as design constraint in the optimization problem. Sensitivity analyses are performed to study the effects of design variables on the buckling pressure, material failure pressure and design pressure. Comparative study is carried out to analyze the buoyancy factors of the cylindrical shell made of metal alloys and composites. Results reveal that as the shell thickness of the cylinder increases, the material failure pressure instead of the buckling pressure determines the design pressure. It can be concluded that reliable winding pattern designs can be achieved for composite cylinders under hydrostatic pressure when the Tsai-Wu failure criterion is considered.

关键词: optimization| composites| cylindrical shell| buckling| failure

CLC Number: