J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 566-581.doi: 10.1007/s12204-023-2646-3
收稿日期:
2022-12-08
接受日期:
2022-12-30
出版日期:
2025-06-06
发布日期:
2025-06-06
范兴刚,刘贾贤,李超,杨友东,谷文婷,姜新阳
Received:
2022-12-08
Accepted:
2022-12-30
Online:
2025-06-06
Published:
2025-06-06
摘要: 肺部疾病的类型多样且复杂,基于计算机断层扫描技术(Computed Tomography,CT)图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题。研究将注意力机制与迁移学习相结合,构建可在肺CT图像上实现新冠肺炎自动诊断的深度学习模型。迁移学习中编码阶段使用ImageNet预先训练的VGG16作为编码器,基于U-Net结构设计解码器,在每次进行拼接操作时引入注意力模块能让模型对重要信息重点关注并快速锁定重要部分。在COVID-19-CT-Seg-Benchmark数据集上进行实验,Dice,F1,Accuracy最高分别达到了0.9071,0.9076,0.9965。同时评估泛化性能,性能指标包括Dice,F1和Accuracy超过0.8。实验结果表明本文所提出的分割网络的有效性。
中图分类号:
. 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581.
Fan Xinggang, Liu Jiaxian, Li Chao, Yang Youdong, Gu Wenting, Jiang Xinyang. Computer Aided Diagnosis for COVID-19 in CT Images Utilizing Transfer Learning and Attention Mechanism[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581.
[1] ISLAMI F, WARD E M, SUNG H, et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics[J]. JNCI: Journal of the National Cancer Institute, 2021, 113(12): 1648-1669. [2] CRESSMAN S, PEACOCK S J, TAMMEMÄGI M C, et al. The cost-effectiveness of high-risk lung cancer screening and drivers of program efficiency [J]. Journal of Thoracic Oncology, 2017, 12(8): 1210-1222. [3] FIELD J K, VULKAN D, DAVIES M P A, et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis [J]. The Lancet Regional Health Europe, 2021, 10: 100179. [4] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-net: Learning where to look for the pancreas [DB/OL]. (2018-04-11). https://arxiv.org/abs/1804.03999 [5] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [7] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer, 2015: 234-241. [8] PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. [9] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [11] SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: A review of theory and applications [J]. IEEE Access, 2021, 9: 82031-82057. [12] CHENG D, LAM E Y. Transfer learning U-net deep learning for lung ultrasound segmentation [DB/OL]. (2021-10-05). https://arxiv.org/abs/2110.02196 [13] YIN J T, LI J W, HUANG Q H, et al. Ultrasonographic segmentation of fetal lung with deep learning [J]. Journal of Biosciences and Medicines, 2021, 9(1): 146-153. [14] PETIT O, THOME N, RAMBOUR C, et al. U-net transformer: Self and cross attention for medical image segmentation[M]// Machine learning in medical imaging. Cham: Springer, 2021: 267-276. [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [16] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [DB/OL]. (2015-06-05). https://arxiv.org/abs/1506.02025 [17] AMIRI M, BROOKS R, RIVAZ H. Fine-tuning U-net for ultrasound image segmentation: Different layers, different outcomes [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(12): 2510-2518. [18] TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: Full training or fine tuning? [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1299-1312. [19] PRAKASH R M, THENMOEZHI N, GAYATHRI M. Face recognition with convolutional neural network and transfer learning [C]//2019 International Conference on Smart Systems and Inventive Technology. Tirunelveli: IEEE, 2019: 861-864. [20] MA J, WANG Y X, AN X L, et al. Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation [J]. Medical Physics, 2021, 48(3): 1197-1210. [21] XIA C Q, LI J, CHEN X W, et al. What is and What is Not a Salient Object? Learning Salient Object Detector by Ensembling Linear Exemplar Regressors [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4399-4407. [22] XIE Y T, RICHMOND D. Pre-training on grayscale ImageNet improves medical image classification[M]// Computer vision – ECCV 2018 workshops. Cham: Springer, 2019: 476-484. [23] ZOU K H, WARFIELD S K, BHARATHA A, et al. Statistical validation of image segmentation quality based on a spatial overlap index 1 [J]. Academic Radiology, 2004, 11(2): 178-189. [24] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [DB/OL]. (2016-02-24). https://arxiv.org/abs/1602.07360 [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [26] JOSEPH RAJ A N, ZHU H P, KHAN A, et al. ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans [J]. PeerJ Computer Science, 2021, 7: e349. |
[1] | . 基于粒可微性印度COVID-19疫情模糊动态最优模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 545-554. |
[2] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[3] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[4] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[5] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[6] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
[8] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[9] | 陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[10] | 顾闻,徐奕. 基于对抗学习和迭代优化的视网膜血管分割[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 73-80. |
[11] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[12] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[13] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[14] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[15] | CAI Min (蔡敏), LUO Jianwen (骆建文). Influence of COVID-19 on Manufacturing Industry and Corresponding Countermeasures from Supply Chain Perspective[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(4): 409-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||