J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 545-554.doi: 10.1007/s12204-023-2642-7
收稿日期:
2022-07-25
接受日期:
2022-12-23
出版日期:
2025-06-06
发布日期:
2025-06-06
KHATUA Debnarayan1, DE Anupam2, KAR Samarjit3, SAMANTA Eshan4, SEKH Arif Ahmed5, GUHA ADHYA Debashree6
Received:
2022-07-25
Accepted:
2022-12-23
Online:
2025-06-06
Published:
2025-06-06
摘要: 流行病毒SARS-CoV-2,命名为COVID-19,未来几年可能持续大规模传播。由于还未获得可证实的药物,死亡率迅速上升。保护健康的首要措施是病人或感染区域隔离。由于人类是唯一携带者,如果将感染人群或病毒携带者相互隔离,可能会控制阳性率。隔离可能不是一个适当的解决办法,这些是当前在世界各地开展的COVID-19研究工作共识。因为在世界各地的数据库和印度每天记录的阳性病例不精确,目前世界和公共卫生情况正在受到COVID-19严重不确定性问题的打击。在这项研究中,我们提出了一种基于模糊动态系统的粒可微性COVID-19最优控制模型。第一步,我们创建了COVID-19模糊易感-暴露-感染-无症状-住院-康复-死亡(SEIAHRD)模型,使用粒可微性对其进行分析,并报告了与时间无关疾病控制参数的疾病动态。第二步,我们将与时间相关疾病控制参数相关联的模糊动力系统和粒可微性模型升级为最优控制问题输入。用第一波和第二波初期印度视角的新冠肺炎疫情相关实际数据对理论研究进行了验证。
中图分类号:
. 基于粒可微性印度COVID-19疫情模糊动态最优模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 545-554.
KHATUA Debnarayan, DE Anupam, KAR Samarjit, SAMANTA Eshan, SEKH Arif Ahmed, GUHA ADHYA Debashree. Fuzzy Dynamic Optimal Model for COVID-19 Epidemic in India Based on Granular Differentiability[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 545-554.
[1] CONSORTIUM C S M E. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China [J]. Science, 2004, 303(5664): 1666-1669. [2] CHAN J F W, LAU S K P, TO K K W, et al. Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease [J]. Clinical Microbiology Reviews, 2015, 28(2): 465-522. [3] TAO Y, SHI M, CHOMMANARD C, et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history [J]. Journal of Virology, 2017, 91(5): e01953-e01916. [4] CORMAN V M, ECKERLE I, MEMISH Z A, et al. Link of a ubiquitous human coronavirus to dromedary camels [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9864-9869. [5] TANG X L, WU C C, LI X, et al. On the origin and continuing evolution of SARS-CoV-2 [J]. National Science Review, 2020, 7(6): 1012-1023. [6] ZHANG T, WU Q F, ZHANG Z G. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak [J]. Current Biology, 2020, 30(7): 1346-1351.e2. [7] LAM T T Y, JIA N, ZHANG Y W, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins[J]. Nature, 2020, 583(7815): 282-285. [8] QIN E D, HE X L, TIAN W, et al. A genome sequence of novel SARS-CoV isolates: The genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China [J]. Genomics, Proteomics & Bioinformatics, 2003, 1(2): 101-107. [9] KAHN J S, MCINTOSH K. History and recent advances in coronavirus discovery [J]. The Pediatric Infectious Disease Journal, 2005, 24(11): S223-S227. [10] MALIK Y S, SIRCAR S, BHAT S, et al. Emerging novel coronavirus (2019-nCoV)—Current scenario, evolutionary perspective based on genome analysis and recent developments [J]. Veterinary Quarterly, 2020, 40(1): 68-76. [11] PEIRIS J, LAI S T, POON L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome [J]. The Lancet, 2003, 361(9366): 1319-1325. [12] PYRC K, DIJKMAN R, DENG L A, et al. Mosaic structure of human coronavirus NL63, one thousand years of evolution [J]. Journal of Molecular Biology, 2006, 364(5): 964-973. [13] RELUGA T C. Game theory of social distancing in response to an epidemic [J]. PLoS Computational Biology, 2010, 6(5): e1000793. [14] FANG Y Q, NIE Y T, PENNY M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis [J]. Journal of Medical Virology, 2020, 92(6): 645-659. [15] ANDERSEN K G, RAMBAUT A, LIPKIN W I, et al. The proximal origin of SARS-CoV-2 [J]. Nature Medicine, 2020, 26(4): 450-452. [16] HOU C, CHEN J, ZHOU Y, et al. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model analysis[J]. Journal of Medical Virology, 2020, 92(7): 841-848. [17] RADULESCU A, WILLIAMS C, CAVANAGH K. Management strategies in a SEIR model of COVID 19 community spread [DB/OL]. (2020-11-27). https://arxiv.org/abs/2003.11150 doi:10.1101/2020.04.01.20049825. [18] PANDEY G, CHAUDHARY P, GUPTA R, et al. SEIR and Regression Model based COVID-19 outbreak predictions in India [DB/OL]. (2020-04-01). https://arxiv.org/abs/2004.00958 [19] SINHA S, SINHA N. Modelling of COVID–19 infection propagation data in Indian population [DB/OL]. (2020-04-05). https://doi.org/10.31219/osf.io/emf9r [20] TIWARI A. Modelling and analysis of COVID-19 epidemic in India [J]. Journal of Safety Science and Resilience, 2020, 1(2): 135-140. [21] NAJARIYAN M, FARAHI M H, ALAVIAN M. Optimal control of hiv infection by using fuzzy dynamical systems [J]. Journal of Mathematics and Computer Science, 2011, 2(4): 639-649. [22] MAZANDARANI M, NAJARIYAN M. Differentiability of type-2 fuzzy number-valued functions [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(3): 710-725. [23] VAN HOA N. Fuzzy fractional functional differential equations under Caputo gH-differentiability [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 1134-1157. [24] NGO V H. Fuzzy fractional functional integral and differential equations [J]. Fuzzy Sets and Systems, 2015, 280: 58-90. [25] LONG H V, SON N T K, HOA N V. Fuzzy fractional partial differential equations in partially ordered metric spaces[J]. Iranian Journal of Fuzzy Systems, 2017, 14(2): 107-126. [26] LONG H V, SON N T K, TAM H T T. The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability [J]. Fuzzy Sets and Systems, 2017, 309: 35-63. [27] NAJARIYAN M, FARAHI M H. A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability [J]. Journal of the Franklin Institute, 2015, 352(5): 1836-1849. [28] NAJARIYAN M, FARAHI M H. Optimal control of fuzzy linear controlled system with fuzzy initial conditions[J]. Iranian Journal of Fuzzy Systems, 2013, 10(3): 21-35. [29] KHATUA D, DE A, MAITY K, et al. Use of “e” and “g” operators to a fuzzy production inventory control model for substitute items [J]. RAIRO - Operations Research, 2019, 53(2): 473-486. [30] NAJARIYAN M, FARAHI M H. A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients [J]. Journal of Computational and Applied Mathematics, 2014, 259: 682-694. [31] KHATUA D, SAMONTO E, MAITY K, et al. A single period fuzzy production inventory control model with exponential time and stock dependent fuzzy demand [M]// Recent advances in intelligent information systems and applied mathematics. Cham: Springer, 2020: 403-413. [32] MAZANDARANI M, NAJARIYAN M. A note on “a class of linear differential dynamical systems with fuzzy initial condition” [J]. Fuzzy Sets and Systems, 2015, 265: 121-126. [33] KHATUA D, MAITY K. Stability of fuzzy dynamical systems basedon quasi-level-wise system [J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6): 3515-3528. [34] MAZANDARANI M, PARIZ N, KAMYAD A V. Granular differentiability of fuzzy-number-valued functions [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1): 310-323. [35] MAZANDARANI M, PARIZ N. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept [J]. ISA Transactions, 2018, 76: 1-17. [36] PIEGAT A, LANDOWSKI M. Is the conventional interval-arithmetic correct [J]. Journal of Theoretical and Applied Computer Science, 2012, 6(2): 27-44. [37] PIEGAT A, LANDOWSKI M. Two interpretations of multidimensional RDM interval arithmetic-multiplication and division[J]. International Journal of Fuzzy Systems, 2013, 15(4): 486-496. doi:10.1007/978-3-319-11313-5. [38] LANDOWSKI M. Differences between Moore and RDM interval arithmetic [M]// Intelligent systems'2014. Cham: Springer, 2015: 331-340. [39] LANDOWSKI M. Comparison of RDM complex interval arithmetic and rectangular complex arithmetic [M]// Hard and soft computing for artificial intelligence, multimedia and security. Cham: Springer, 2017: 49-57. [40] TOMASZEWSKA K, PIEGAT A. Application of the horizontal membership function to the uncertain displacement calculation of a composite massless rod under a tensile load [M]// Soft computing in computer and information science. Cham: Springer, 2015: 63-72. [41] PIEGAT A, LANDOWSKI M. Horizontal membership function and examples of its applications [J]. International Journal of Fuzzy Systems, 2015, 17(1): 22-30. [42] PIEGAT A, LANDOWSKI M. Is fuzzy number the right result of arithmetic operations on fuzzy numbers? [M]//Advances in fuzzy logic and technology 2017. Cham: Springer, 2017: 181-194. [43] LANDOWSKI M. Usage of RDM interval arithmetic for solving cubic interval equation [M]//Advances in fuzzy logic and technology 2017. Cham: Springer, 2017: 382-391. [44] NAJARIYAN M, ZHAO Y. Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2273-2288. [45] SON N T K, LONG H V, DONG N P. Fuzzy delay differential equations under granular differentiability with applications [J]. Computational and Applied Mathematics, 2019, 38(3): 1-29. [46] BEDE B. Mathematics of fuzzy sets and fuzzy logic [M]. Berlin, Heidelberg: Springer, 2013. [47] DONG N P, LONG H V, KHASTAN A. Optimal control of a fractional order model for granular SEIR epidemic with uncertainty [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 88: 105312. [48] MAZANDARANI M, ZHAO Y. Fuzzy Bang-Bang control problem under granular differentiability [J]. Journal of the Franklin Institute, 2018, 355(12): 4931-4951. [49] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J]. Mathematical Biosciences, 2002, 180: 29-48. [50] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, 1927, 115(772): 700-721. [51] ZHANG J P, JIN Z. The analysis of epidemic network model with infectious force in latent and infected period [J]. Discrete Dynamics in Nature and Society, 2010, 2010: 1-12. [52] JANA S, HALDAR P, KAR T K. Mathematical analysis of an epidemic model with isolation and optimal controls [J]. International Journal of Computer Mathematics, 2017, 94(7): 1318-1336. [53] RODRIGUES H S, MONTEIRO M T T, TORRES D F M. Vaccination models and optimal control strategies to dengue [J]. Mathematical Biosciences, 2014, 247: 1-12. [54] RODRIGUES P, SILVA C J, TORRES D F M. Cost-effectiveness analysis of optimal control measures for tuberculosis [J]. Bulletin of Mathematical Biology, 2014, 76(10): 2627-2645. [55] RACHAH A, TORRES D F M. Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa [J]. Discrete Dynamics in Nature and Society, 2015, 2015: 1-9. [56] GRIGORIEVA E V, KHAILOV E N, KOROBEINIKOV A. Optimal control for a SIR epidemic model with nonlinear incidence rate [J]. Mathematical Modelling of Natural Phenomena, 2016, 11(4): 89-104. [57] KAR T K, JANA S. A theoretical study on mathematical modelling of an infectious disease with application of optimal control [J]. Biosystems, 2013, 111(1): 37-50. [58] PONTRYAGIN L S. Mathematical theory of optimal processes [M]. Boca Raton: CRC Press, 1987. [59] CASTILLO O, CASTRO J R, PULIDO M, et al. Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction [J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105110. [60] CASTILLO O, MELIN P. A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics [J]. Chaos, Solitons & Fractals, 2021, 151: 111250. [61] World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 72 [EB/OL]. (2020-04-01). https://apps.who.int/iris/bitstream/handle/10665/331685/nCoVsitrep01Apr2020-eng.pdf2020 [62] COVID19INDIA [EB/OL]. [2022-07-25]. https://www.covid19india.org/ |
[1] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[2] | CAI Min (蔡敏), LUO Jianwen (骆建文). Influence of COVID-19 on Manufacturing Industry and Corresponding Countermeasures from Supply Chain Perspective[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(4): 409-416. |
[3] | LIU Chenzhengyi (刘陈正轶), ZHAO Jingwei (赵经纬), LIU Guohang (刘国航), GAO Yuanning (高远宁. D2EA: Depict the Epidemic Picture of COVID-19[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 165-176. |
[4] | LI Sijia (李斯佳), SONG Kun (宋琨), YANG Boran (杨博然), GAO Yucen (高宇岑), GAO Xiaofeng (. Preliminary Assessment of the COVID-19 Outbreak Using 3-Staged Model e-ISHR[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 157-164. |
[5] | ZHOU Lingyun (周凌云), WU Kaiwei (吴凯伟), LIU Hanzhi (刘涵之), GAO Yuanning (高远宁), GAO X. CIRD-F: Spread and Influence of COVID-19 in China[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 147-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||