J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1188-1194.doi: 10.1007/s12204-023-2669-9
收稿日期:2023-06-16
接受日期:2023-07-08
出版日期:2025-11-21
发布日期:2023-11-06
许勇1,2,蔡云泽1,3,宋林2
Received:2023-06-16
Accepted:2023-07-08
Online:2025-11-21
Published:2023-11-06
摘要: 在小样本故障数据情形下,对核电厂电子板卡剩余寿命进行预测研究,可以为核电厂运维提供必要的决策依据,提升核电厂机组运行的经济性和安全性。为了解决小样本故障问题,本文采用威布尔模型来预测在核电厂电子卡件寿命,并利用阿伦尼斯方程揭示了电子卡寿命预测与环境温度之间的关系。首先采用截尾数据来扩充故障样本,通过删失数据与故障数据之间的权重比来进一步优化威布尔模型的尺度参数和形状参数;并利用秩回归拟合方程的方法获得卡件的特征寿命;采用小样本分组实验的方法来获取阿伦尼斯模型参数。通过对堆外中程高压电子卡的案例研究表明,在小样本故障场景下,结合威布尔模型和阿伦尼斯模型,可以对核电厂电子卡的寿命进行成功预测。该方法可以为核电厂电子卡件的预防性维修周期制定提供决策依据。最后利用温度-寿命模型可以为卡件的运维提供参考建议。
中图分类号:
. 基于少样本的核电厂电子卡件寿命预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1188-1194.
XU Yong, CAI Yunze, SONG Lin. Lifespan Prediction of Electronic Card in Nuclear Power Plant Based on Few Samples[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1188-1194.
| [1] XU Y, CAI Y Z, SONG L. Review of research on condition assessment of nuclear power plant equipment based on data-driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278 (in Chinese). [2] YU W K, HARRIS T A. A new stress-based fatigue life model for ball bearings [J]. Tribology Transactions, 2001, 44(1): 11-18. [3] MADAR E, KLEIN R, BORTMAN J. Contribution of dynamic modeling to prognostics of rotating machinery [J]. Mechanical Systems and Signal Processing, 2019, 123: 496-512. [4] REN S H, XUE F, YU W W, et al. Reliability residual-life prediction method for thermal aging based on performance degradation [J]. Nuclear Power Engineering, 2013, 34(5): 96-99 (in Chinese). [5] UTAH M N, JUNG J C. Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks [J]. Nuclear Engineering and Technology, 2020, 52(9): 1998-2008. [6] LEE B S, CHUNG H S, KIM K T, et al. Remaining life prediction methods using operating data and knowledge on mechanisms [J]. Nuclear Engineering and Design, 1999, 191(2): 157-165. [7] NGUYEN H P, FAURIAT W, ZIO E, et al. A data-driven approach for predicting the remaining useful life of steam generators [C]//2018 3rd International Conference on System Reliability and Safety. Barcelona: IEEE, 2018: 255-260. [8] AIZPURUA J I, MCARTHUR S D J, STEWART B G, et al. Adaptive power transformer lifetime predictions through machine learning and uncertainty modeling in nuclear power plants [J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4726-4737. [9] WANG H, PENG M J, XU R Y, et al. Remaining useful life prediction based on improved temporal convolutional network for nuclear power plant valves [J]. Frontiers in Energy Research, 2020, 8: 584463. [10] WANG H, PENG M J, LIU Y K, et al. Remaining useful life prediction techniques of electric valves for nuclear power plants with convolution kernel and LSTM [J]. Science and Technology of Nuclear Installations, 2020, 2020: 1-13. [11] SAARELA O, HULSUND J E, TAIPALE A, et al. Remaining Useful Life Estimation for Air Filters at a Nuclear Power Plant[C]//2nd European Conference of the Prognostics and Health Management Society 2014. Nantes: PHM Society, 2014: 75-81. [12] YOU D Z, LIU H, ZHANG Y P. Optimization design and reliability statistical analysis of mechanical accelerated life test based on Weibull distribution [J]. Journal of Mechanical & Electrical Engineering, 2023, 40(5): 664-672 (in Chinese). [13] LU J, GONG P H, YE J P, et al. Learning from very few samples: A survey [DB/OL]. (2020-09-06). https://arxiv.org/abs/2009.02653 [14] HALLINAN A J Jr. A review of the weibull distribution [J]. Journal of Quality Technology, 1993, 25(2): 85-93. [15] SHI J, SHEN D H, SHI H N, et al. Reliability data process and analysis of instrument and control switch in nuclear power plants [J]. Nuclear Power Engineering, 2010, 31(2): 54-57 (in Chinese). [16] KANG M, LEE S, PARK H, et al. Lifetime estimation for optocouplers using accelerated degradation test [J]. Quality and Reliability Engineering International, 2022, 38(1): 560-573. |
| [1] | 罗逸夫, 胡秦然, 钱涛, 陈涛, 张远实, 章飞, 王琦. 计及多工况对机组寿命损耗影响的机组组合优化模型[J]. 上海交通大学学报, 2025, 59(6): 768-779. |
| [2] | 刘诗学. 季节性载荷对系泊系统疲劳寿命的影响研究[J]. 海洋工程装备与技术, 2025, 12(2): 156-161. |
| [3] | 沈钰焜, 王继刚, 乔信起. 煤直接、间接液化柴油及其混合燃料液滴的蒸发特性[J]. 上海交通大学学报, 2024, 58(8): 1148-1155. |
| [4] | 张诚, 琚长江, 熊灿, 杨根科. 基于双级主动式拓扑的锂电池寿命优化[J]. 上海交通大学学报, 2024, 58(5): 719-729. |
| [5] | 徐蓉霞, 高建雄, 朱鹏年, 吴志峯. 纤维增强复合材料层压板的疲劳寿命预测方法[J]. 上海交通大学学报, 2024, 58(3): 400-410. |
| [6] | 孙志伟, 胡雄, 董凯, 孙德建, 刘洋. 基于LSTM-CAPF框架的岸桥起升减速箱轴承寿命预测方法[J]. 上海交通大学学报, 2024, 58(3): 352-360. |
| [7] | 苏雨临, 连冠, 张大骋. 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J]. 上海交通大学学报, 2024, 58(10): 1575-1584. |
| [8] | 贺文选, 叶茂盛, 张雨, 张雅泰, 代晓辉, 张崎. 悬挂链在磨损条件下的极限强度评估[J]. 海洋工程装备与技术, 2024, 11(1): 23-29. |
| [9] | 钟智伟, 王誉翔, 黄亦翔, 肖登宇, 夏鹏程, 刘成良. 基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测[J]. 上海交通大学学报, 2023, 57(8): 1005-1015. |
| [10] | 王汉禹, 陈震, 周笛, 陈兆祥, 潘尔顺. 基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测[J]. 上海交通大学学报, 2023, 57(8): 1037-1045. |
| [11] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
| [12] | 陈培芝1,2, 郭逸凡1, 王大寒1,2, 陈金铃1,3,4. Dlung:无监督少镜头差异呼吸运动建模[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 536-. |
| [13] | 李 想, 刘 晓, 李 森, 刘程程, 刘晓彬, 高 爽. 玻璃纤维增强乙烯基酯复合材料耐海水腐蚀寿命预测[J]. 海洋工程装备与技术, 2023, 10(4): 107-110. |
| [14] | 刘 军, 张传旭, 曲 杰. 海底管道外腐蚀复合材料水下缠绕补强修复技术应用[J]. 海洋工程装备与技术, 2023, 10(4): 24-29. |
| [15] | 王者蓝, 赵宏杰, 赵凡, 沈晨晨, 吴佳伟. 基于卷积神经网络与滤波融合算法的某惯导系统剩余寿命预测模型建立[J]. 空天防御, 2023, 6(1): 70-77. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||