上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (10): 1575-1584.doi: 10.16183/j.cnki.jsjtu.2023.072
收稿日期:
2023-03-03
修回日期:
2023-04-24
接受日期:
2023-05-29
出版日期:
2024-10-28
发布日期:
2024-11-01
通讯作者:
张大骋,副教授;E-mail:作者简介:
苏雨临(1998—),硕士生,从事燃料电池可靠性研究.
基金资助:
SU Yulin1, LIAN Guan2, ZHANG Dacheng1,3()
Received:
2023-03-03
Revised:
2023-04-24
Accepted:
2023-05-29
Online:
2024-10-28
Published:
2024-11-01
摘要:
微型直接甲醇燃料电池(μDMFC)具有能量密度高、可便携使用、快速补能以及环境友好等优点.然而,由于膜电极在电化学反应中会退化,μDMFC的有效使用寿命有限,所以需要对其健康状态与剩余使用寿命进行评估,为燃料电池改性和控制策略提供决策支持.在结合数据驱动和机理模型预测方法的基础上,针对动态运行工况,提出一种基于等效电路模型(ECM)的μDMFC剩余使用寿命预测方法.在燃料电池的性能退化指标中,电池输出电压可以被实时监测从而获得电池的退化趋势,但这一指标无法单独提供精确的预测结果.通过测量电化学阻抗谱并结合ECM可以得到电池内部阻抗等深层信息,但这些深层信息不易被实时监测,通常只能低频离线测量.此外,燃料电池在实际应用中多处于变工况状态,其退化趋势和使用寿命受工作环境影响,传统基于电压退化趋势回归的预测方法无法应对工况的动态变化.因此,可通过定期离线获取内部退化参量建立预测模型.实验结果表明:与传统数据驱动的方法相比,基于内部退化参量的预测方法能更好地适应变工况环境,在燃料电池剩余使用寿命预测中具有更好的性能.
中图分类号:
苏雨临, 连冠, 张大骋. 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J]. 上海交通大学学报, 2024, 58(10): 1575-1584.
SU Yulin, LIAN Guan, ZHANG Dacheng. Equivalent Circuit Model-Based Prognostics for Micro Direct Methanol Fuel Cell Under Dynamic Operating Conditions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1575-1584.
表2
不同时间的ECM模型参数识别结果示例
日期 | Er/V | R1/Ω | R2/Ω | R3/Ω | L1/μH | L2/H | CPE1/ (S·sn) | CPE2/ (S·sn) |
---|---|---|---|---|---|---|---|---|
2021-11-23 | 0.725 | 0.575 | 3.310 | 2.770 | 1.130 | 8.39 | 0.362 | 0.575 |
2021-12-21 | 0.712 | 0.735 | 4.930 | 2.520 | 0.990 | 7.27 | 0.298 | 0.612 |
2022-03-14 | 0.600 | 0.564 | 3.970 | 2.240 | 1.040 | 10.40 | 0.345 | 0.479 |
2022-04-06 | 0.550 | 0.648 | 4.150 | 1.990 | 1.210 | 13.40 | 0.341 | 0.488 |
[1] | LIU J X, GAO Y B, SU X J, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1129-1138. |
[2] | ESMAEILI N, GRAY E M, WEBB C J. Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—A review[J]. Chemphyschem: A European Journal of Chemical Physics & Physical Chemistry, 2019, 20(16): 2016-2053. |
[3] | RAMEZANIZADEH M, ALHUYI NAZARI M, HOSSEIN AHMADI M, et al. A review on the approaches applied for cooling fuel cells[J]. International Journal of Heat & Mass Transfer, 2019, 139: 517-525. |
[4] | THOMPSON S T, JAMES B D, HUYA-KOUADIO J M, et al. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook[J]. Journal of Power Sources, 2018, 399: 304-313. |
[5] | LI X L, XIE C J, QUAN S H, et al. Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system[J]. Applied Energy, 2018, 231: 887-900. |
[6] | DUBAU L, CASTANHEIRA L, MAILLARD F, et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies[J]. Wiley Interdisciplinary Reviews: Energy & Environment, 2014, 3(6): 540-560. |
[7] | ROBIN C, GÉRARD M, QUINAUD M, et al. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests[J]. Journal of Power Sources, 2016, 326: 417-427. |
[8] | ZHU L, CHEN J. Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy, 2018, 149: 63-73. |
[9] | 路凯. 质子交换膜燃料电池动态响应特性分析及寿命预测研究[D]. 北京: 北京交通大学, 2020. |
LU Kai. Dynamic response analysis and life prediction of proton exchange membrane fuel cell[D]. Beijing: Beijing Jiaotong University, 2020. | |
[10] | WU Y M, BREAZ E, GAO F, et al. A modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2573-2581. |
[11] | WANG M H, TSAI H H. Fuel cell fault forecasting system using grey and extension theories[J]. IET Renewable Power Generation, 2012, 6(6): 373-380. |
[12] | LU H X, CHEN J, YAN C Z, et al. On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources, 2019, 430: 233-243. |
[13] | ZHANG D, BARALDI P, CADET C, et al. An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells[J]. Mechanical Systems & Signal Processing, 2019, 124: 479-501. |
[14] | 薛瑞. 微型直接甲醇燃料电池高浓度传质阻挡层技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
XUE Rui. Research on mass transfer barrier layer of concentrated direct methanol fuel cell[D]. Harbin: Harbin Institute of Technology, 2019. | |
[15] | 靖春胜, 张铁臣, 于镒隆, 等. 基于NEDC和WLTC工况循环的混合动力汽车排放特性研究[J]. 河北工业大学学报, 2021, 50(4): 51-56. |
JING Chunsheng, ZHANG Tiechen, YU Yilong, et al. Study on emission characteristics of hybrid electric vehicle based on NEDC and WLTC working cycle[J]. Journal of Hebei University of Technology, 2021, 50(4): 51-56. | |
[16] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[17] | GUO Q Z, CAYETANO M, TSOU Y M, et al. Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy[J]. Journal of the Electrochemical Society, 2003, 150(11): A1440. |
[18] | SØRENSEN T S, KJELSTRUP S. A simple maxwell-wagner-butler-volmer approach to the impedance of the hydrogen electrode in a nafion fuel cell[J]. Journal of Colloid & Interface Science, 2002, 248(2): 355-375. |
[19] | PASTOR-FERNÁNDEZ C, DHAMMIKA WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique[C]// 2016 IEEE Transportation Electrification Conference & Expo. Dearborn, USA: IEEE, 2016: 1-6. |
[20] |
张少哲, 戴海峰, 袁浩, 等. 质子交换膜燃料电池电化学阻抗谱敏感性研究[J]. 机械工程学报, 2021, 57(14): 40-51.
doi: 10.3901/JME.2021.14.040 |
ZHANG Shaozhe, DAI Haifeng, YUAN Hao, et al. Sensibility study on electrochemical impedance of proton exchange membrane fuel cell[J]. Journal of Mechanical Engineering, 2021, 57(14): 40-51.
doi: 10.3901/JME.2021.14.040 |
|
[21] | 鲜亮, 肖建, 贾俊波. 质子交换膜燃料电池交流阻抗谱实验研究[J]. 中国电机工程学报, 2010, 30(35): 101-106. |
XIAN Liang, XIAO Jian, JIA Junbo. An experimental study on AC impedance spectroscopy of proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2010, 30(35): 101-106. | |
[22] | 郭建伟, 毛宗强, 徐景明. 采用交流阻抗法对质子交换膜燃料电池(PEMFC)电化学行为的研究[J]. 高等学校化学学报, 2003, 24(8): 1477-1481. |
GUO Jianwei, MAO Zongqiang, XU Jingming. Studies on the electrochemical behavior of polymer electrolyte membrane fuel cell (PEMFC) by AC impedance method[J]. Chemical Research in Chinese Universities, 2003, 24(8): 1477-1481. |
[1] | 舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰. 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022, 56(5): 564-575. |
[2] | 顾艳红1,马慧娟1,高辉1,车俊铁1,焦向东1,田路1,2. 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀[J]. 上海交通大学学报(自然版), 2017, 51(11): 1348-1354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||