J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 536-.doi: 10.1007/s12204-022-2525-3
所属专题: 医学图像
陈培芝1,2, 郭逸凡1, 王大寒1,2, 陈金铃1,3,4
收稿日期:
2021-01-27
接受日期:
2021-09-17
出版日期:
2023-07-28
发布日期:
2023-07-31
CHEN Peizhi1,2* (陈培芝), GUO Yifan1 (郭逸凡),WANG Dahan1,2 (王大寒), CHEN Chinling1,3,4* (陈金铃)
Received:
2021-01-27
Accepted:
2021-09-17
Online:
2023-07-28
Published:
2023-07-31
摘要: 肺部图像配准在肺部分析应用中具有重要作用,比如呼吸运动建模。基于无监督学习的图像配准方法可以在不需要监督的情况下计算变形,因此受到了广泛的关注。但是,需要注意的是,它们有两个缺点:它们不能处理数据不足的问题,也不能保证微分同胚(保留拓扑结构)属性,特别是当肺部扫描中存在较大形变时。本文提出了一种基于无监督少样本学习的微分同胚肺部图像配准方法,称为Dlung。我们采用微调解决数据不足的问题,并采用缩放-平方层来实现微分同胚配准。在实验中,我们进行了空间时间(4D)图像上的配准,并与基准方法进行了全面比较。Dlung取得了最高的微分同胚准确率,它使用有限的数据构建了准确和快速的呼吸运动模型。这项研究扩展了我们对呼吸运动建模的认识。
中图分类号:
陈培芝1,2, 郭逸凡1, 王大寒1,2, 陈金铃1,3,4. Dlung:无监督少镜头差异呼吸运动建模[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 536-.
CHEN Peizhi1,2* (陈培芝), GUO Yifan1 (郭逸凡),WANG Dahan1,2 (王大寒), CHEN Chinling1,3,4* (陈金铃). Dlung: Unsupervised Few-Shot Diffeomorphic Respiratory Motion Modeling[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 536-.
[1] STEWART B W, WILD C P. World cancer report 2014[M]. Lyon: International Agency for Research on Cancer, 2014. [2] SHEN D G, DAVATZIKOS C. HAMMER: Hierarchical attribute matching mechanism for elastic registration [J]. IEEE Transactions on Medical Imaging, 2002,21(11): 1421-1439. [3] KLEIN S, STARING M, MURPHY K, et al. Elastix:A toolbox for intensity-based medical image registration [J]. IEEE Transactions on Medical Imaging, 2010,29(1): 196-205. [4] BEG M F, MILLER M I, TROUV′E A, et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J]. International Journal ofComputer Vision, 2005, 61(2): 139-157. [5] ASHBURNER J. A fast diffeomorphic image registration algorithm [J]. NeuroImage, 2007, 38(1): 95-113. [6] AVANTS B B, EPSTEIN C L, GROSSMAN M, etal. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J]. Medical ImageAnalysis, 2008, 12(1): 26-41. [7] JADERBERG M, SIMONYAN K, ZISSERMAN A,et al. Spatial transformer networks [M]//Advances inneural information processing systems 28. Red Hook:Curran Associates, 2015: 1-9. [8] SOKOOTI H, VOS B D, BERENDSEN F, et al. Nonrigid image registration using multi-scale 3D convolutional neural networks [M]//Medical image computingand computer assisted intervention – MICCAI 2017.Cham: Springer, 2017: 232-239. [9] EPPENHOF K J, LAFARGE M W, MOESKOPS P, etal. Deformable image registration using convolutionalneural networks [J]. Proceedings of SPIE, 2018, 10574:105740S. [10] NAZIB A, FOOKES C, PERRIN D. A comparative analysis of registration tools: Traditional vs deep learning approach on high resolution tissue cleared data [DB/OL]. (2018-10-18).https://arxiv.org/abs/1810.08315. [11] BALAKRISHNAN G, ZHAO A, SABUNCU M R, etal. VoxelMorph: A learning framework for deformable medical image registration [J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 2019Feb4. [12] FU Y B, LEI Y, WANG T H, et al. LungRegNet: Anunsupervised deformable image registration methodfor 4D-CT lung [J]. Medical Physics, 2020, 47(4):1763-1774. [13] HEINRICH M P, HANSEN L. Highly accurate and memory efficient unsupervised learning-based discreteCT registration using 2.5D displacement search [M]//Medical image computing and computer assisted intervention - MICCAI 2020. Cham: Springer, 2020:190-200. [14] HERING A, HELDMANN S. Unsupervised learningfor large motion thoracic CT follow-up registration [J].Proceedings of SPIE, 2019, 10949: 109491B. [15] LEE M C H, OKTAY O, SCHUH A, et al. Imageand-spatial transformer networks for structure-guided image registration [M]//Medical image computing and computer assisted intervention — MICCAI 2019.Cham: Springer, 2019: 337-345. [16] SENTKER T, MADESTA F, WERNER R. GDLFIRE4D: Deep learning-based fast 4D CT image registration [M]//Medical image computing and computer assisted intervention — MICCAI 2018. Cham:Springer, 2018: 765-773. [17] ZHAO S Y, DONG Y, CHANG E, et al. Recursivecascaded networks for unsupervised medical image registration [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 10599-10609. [18] DALCA A V, BALAKRISHNAN G, GUTTAG J, etal. Unsupervised learning for fast probabilistic diffeomorphic registration [M]//Medical image computingand computer assisted intervention — MICCAI 2018.Cham: Springer: 729-738. [19] YANG X, KWITT R, STYNER M, et al. Quicksilver:Fast predictive image registration — A deep learningapproach [J]. NeuroImage, 2017, 158: 378-396. [20] KREBS J, DELINGETTE H, MAILHE B, et al.Learning a probabilistic model for diffeomorphic registration [J]. IEEE Transactions on Medical Imaging,2019, 38(9): 2165-2176. [21] MOK T C W, CHUNG A C S. Fast symmetric diffeomorphic image registration with convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE,2020: 4643-4652. [22] MOK T C W, CHUNG A C S. Large deformation diffeomorphic image registration with Laplacian pyramidnetworks [M]//Medical image computing and computer assisted intervention – MICCAI 2020. Cham:Springer, 2020: 211-221. [23] HU R X, WANG H K, RISTANIEMI T, et al. LungCT image registration through landmark-constrainedlearning with convolutional neural network [C]//202042nd Annual International Conference of the IEEEEngineering in Medicine & Biology Society. Montreal:IEEE, 2020: 1368-1371. [24] PUNN N S, AGARWAL S. Automated diagnosis ofCOVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks [J]. Applied Intelligence, 2021, 51: 2689-2702. [25] AMIRI M, BROOKS R, RIVAZ H. Fine-tuning U-net for ultrasound image segmentation: Different layers,different outcomes [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020,67(12): 2510-2518. [26] CHEN C, DOU Q, CHEN H, et al. Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical imagesegmentation [J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2494-2505. [27] FERRANTE E, OKTAY O, GLOCKER B, et al.On the adaptability of unsupervised CNN-based deformable image registration to unseen image domains[M]//Machine learning in medical imaging. Cham:Springer, 2018: 294-302. [28] XUE P, DONG E Q, JI H Z. Lung 4D CT image registration based on high-order Markov random field [J].IEEE Transactions on Medical Imaging, 2020, 39(4):910-921. [29] BALIK S, WEISS E, JAN N, et al. Evaluation of 4-dimensional computed tomography to 4-dimensionalcone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy [J]. International Journal of Radiation OncologyBiology Physics, 2013, 86(2): 372-379. [30] CLARK K, VENDT B, SMITH K, et al. The cancer imaging archive (TCIA): Maintaining and operatinga public information repository [J]. Journal of Digital Imaging, 2013, 26(6): 1045-1057. [31] HUGO G D, WEISS E, SLEEMAN W C, et al. A longitudinal four-dimensional computed tomography andcone beam computed tomography dataset for image-guided radiation therapy research in lung cancer [J].Medical Physics, 2017, 44(2): 762-771. [32] ROMAN N O, SHEPHERD W, MUKHOPADHYAYN, et al. Interfractional positional variability of fiducial markers and primary tumors in locally advanced nonsmall-cell lung cancer during audiovisual biofeedback radiotherapy [J]. International Journal of RadiationOncology Biology Physics, 2012, 83(5): 1566-1572. [33] DICE L R. Measures of the amount of ecologic association between species [J]. Ecology, 1945, 26(3): 297-302. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 857-868. |
[2] | REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊). Multi-Image Restoration Method Combined with Total Generalized Variation and lp-Norm Regularizations[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 551-558. |
[3] | CHEN Sung-Liang (陈松良). Photoacoustic Imaging by Use of Micro-Electro-Mechanical System Scanner[J]. sa, 2018, 23(1): 1-10. |
[4] | ZHANG Zhi-fen* (张志芬), ZHONG Ji-yong (钟继勇), CHEN Yu-xi (陈玉喜), CHEN Shan-ben (陈善本). Feature Extraction and Modeling of Welding Quality Monitoring in Pulsed Gas Touch Argon Welding Based on Arc Voltage Signal[J]. 上海交通大学学报(英文版), 2014, 19(1): 11-16. |
[5] | WEI Shan-chun (卫善春), WANG Jian (王健), LIN Tao (林涛), CHEN Shan-ben (陈善本). Application of Image Morphology in Detecting and Extracting the Initial Welding Position[J]. 上海交通大学学报(英文版), 2012, 17(3): 323-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||