J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 518-527.doi: 10.1007/s12204-022-2451-4
吕峰,王新彦,李磊,江泉,易政洋
收稿日期:
2021-01-17
接受日期:
2021-06-18
出版日期:
2024-05-28
发布日期:
2024-05-28
LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋)
Received:
2021-01-17
Accepted:
2021-06-18
Online:
2024-05-28
Published:
2024-05-28
摘要: 草坪割草机器人在工作时需要避免与树木发生碰撞,因此必须检测到树木。现有的树木检测方法存在检测精度低(漏检)和缺乏轻量级模型的问题。本研究基于真实的草坪环境构建了一个树木数据集。根据通道增量深度卷积和残差抑制理论,提出了Embedded-A模块,该模块将特征图的深度扩展两倍,形成残差结构,以提高模型的轻量级程度。根据残差融合理论,提出了Embedded-B模块,该模块通过深度卷积和池化融合提高了特征图下采样的准确性。通过堆叠嵌入模块和不同分辨率特征图的融合,形成了Embedded YOLO目标检测网络。测试集上的实验结果表明,Embedded YOLO树木检测算法对树干和球形树的平均精度值分别为84.17%和69.91%,平均精度均值为77.04%。卷积参数数量为1.78×106,计算量为38.5亿次浮点运算。权重文件大小为7.11MB,检测速度可达179帧/秒。本研究为草坪割草机器人基于深度学习的目标检测算法的轻量级应用提供了理论依据。
中图分类号:
吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527.
LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527.
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [2] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3296-3297. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587. [5] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448. [6] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//Computer vision-ECCV 2016. Cham: Springer, 2016: 21-37. [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 779-788. [9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 6517-6525. [10] REDMON J, FARHADI A. Yolov3: An incremental improvement [EB/OL]. (2018-04-08). https://arxiv.org/abs/1804.02767. [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934. [12] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17). https://arxiv.org/abs/1704.04861. [13] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 4510-4520. [14] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV ). Seoul, Korea: IEEE, 2019: 1314-1324. [15] YARAK K, WITAYANGKURN A, KRITIYUTANONT K, et al. Oil palm tree detection and health classification on high-resolution imagery using deep learning [J]. Agriculture, 2021, 11(2): 183. [16] ITAKURA K, HOSOI F. Automatic tree detection from three-dimensional images reconstructed from 360? spherical camera using YOLO v2 [J]. Remote Sensing, 2020, 12(6): 988. [17] WEINSTEIN B G, MARCONI S, BOHLMAN S A, et al. Cross-site learning in deep learning RGB tree crown detection [J]. Ecological Informatics, 2020, 56: 101061. [18] ITAKURA K, HOSOI F. Automated tree detection from 3D lidar images using image processing and machine learning [J]. Applied Optics, 2019, 58(14): 3807-3811. [19] MAJEED Y, ZHANG J, ZHANG X, et al. Deep learning based segmentation for automated training of apple trees on trellis wires [J]. Computers and Electronics in Agriculture, 2020, 170: 105277. [20] XI Z X, HOPKINSON C, ROOD S B, et al. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 1-16. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[3] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[4] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | 周苏, 钟泽滨. 基于车载智能手机的实时车辆及行人测距[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[6] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[8] | 宋立博a,费燕琼b. 新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[9] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[10] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[11] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[12] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[13] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform[J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||