J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (6): 809-821.doi: 10.1007/s12204-021-2337-x
朱昶胜1,康亮河1,3,冯文芳2
接受日期:
2020-03-13
出版日期:
2023-11-28
发布日期:
2023-12-04
ZHU Changsheng1 (朱昶胜),KANG Lianghe1.3* (康亮河),FENG Wenfang2 (冯文芳)
Accepted:
2020-03-13
Online:
2023-11-28
Published:
2023-12-04
摘要: 针对Elman神经网络算法在股市收盘价格预测中预测精度低的问题, 基于自适应噪声的完全集合经验模态分解(CEEMDAN),提出了自适应boosting(AdaBoost)算法与人工鱼群优化改进算法(AAFSA)以及 Elman神经网络的组合预测模型。CEEMDAN算法通过对Boruta算法和文本挖掘算法获得的属性集添加白噪声,实现属性序列的分解与降噪;同时利用自适应步长和视角范围对AFSA算法进行了改进,并利用改进后的AAFSA算法优化Elman算法的权值和阈值;最后利用AdaBoos算法在连续迭代的过程中将5个AAFSA-Elman弱预测器组成一个强预测器,从而提高了预测的精度。实验表明:相比 Elman神经网络,AdaBoost-AAFSA-Elman模型的平均绝对百分比误差(MAPE)从4.9423%降低到1.2338%。本研究提出的模型为基于网络舆论股票收盘价格预测提供了一种实验方法。
中图分类号:
朱昶胜1,康亮河1,3,冯文芳2. 基于AdaBoost-AAFSA-Elman模型及CEEMDAN算法的股市网络舆情收盘价预测[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 809-821.
ZHU Changsheng1 (朱昶胜),KANG Lianghe1.3* (康亮河),FENG Wenfang2 (冯文芳). Predicting Stock Closing Price with Stock Network Public Opinion Based on AdaBoost-AAFSA-Elman Model and CEEMDAN Algorithm[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 809-821.
[11] | RENAULT T. Intraday online investor sentiment and return patterns in the US stock market [J]. Journal of Banking & Finance, 2017, 84: 25-40. |
[1] | SAGGI M K, JAIN S. A survey towards an integration of big data analytics to big insights for valuecreation [J]. Information Processing & Management, 2018, 54(5): 758-790. |
[12] | XIONG T, BAO Y K, HU Z Y. Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting [J]. Knowledge-Based Systems, 2014, 55: 87-100. |
[2] | EL OUADGHIRI I, PEILLEX J. Public attention to “Islamic terrorism” and stock market returns [J]. Journal of Comparative Economics, 2018, 46(4): 936- 946. |
[13] | KAO L J, CHIU C C, LU C J, et al. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting [J]. Decision Support Systems, 2013, 54(3): 1228-1244. |
[3] | CHAN J, LIN S, YU Y, et al. Analysts’ stock ownership and stock recommendations [J]. Journal of Accounting and Economics, 2018, 66(2/3): 476- 498. |
[14] | LI S W, CHEN T, WANG L, et al. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index [J]. Tourism Management, 2018, 68: 116-126. |
[4] | DU P, WANG J Z, YANG W D, et al. Multi-step ahead forecasting in electrical power system using a hybrid forecasting system [J]. Renewable Energy, 2018, 122: 533-550. |
[15] | YOU D, CHEN F. Research on the prediction of network public opinion based on improved PSO and BP neural network [J]. Journal of Intelligence, 2016, 35(8): 156-161 (in Chinese). |
[5] | LIU J, MA F, ZHANG Y J. Forecasting the Chinese stock volatility across global stock markets [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 525: 466-477.[6] DAI Z F, ZHOU H T, WEN F H, et al. Efficient predictability of stock return volatility: The role of stock market implied volatility [J]. The North American Journal of Economics and Finance, 2020, 52: 101174. |
[16] | DASH S R, MAITRA D. Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach [J]. Finance Research Letters, 2018, 26: 32-39. |
[7] | DRURY B, ROCHE M. A survey of the applications of text mining for agriculture [J]. Computers and Electronics in Agriculture, 2019, 163: 104864. |
[17] | XIAO C J, CHEN N C, HU C L, et al. Short and midterm sea surface temperature prediction using timeseries satellite data and LSTM-AdaBoost combination approach [J]. Remote Sensing of Environment, 2019, 233: 111358. |
[8] | ABOUNOORI E, TOUR M. Stock market interactions among Iran, USA, Turkey, and UAE [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 524: 297-305. |
[18] | XU M J, SHANG P J, LIN A J. Cross-correlation analysis of stock markets using EMD and EEMD [J]. Physica A: Statistical Mechanics and Its Applications, 2016, 442: 82-90. |
[9] | ZHANG G, XU L, XUE Y. Model and forecast stock market behavior integrating investor sentiment analysis and transaction data [J]. Cluster Computing, 2017, 20(1): 789-803. |
[19] | SHARMA S S, THURAISAMY K, MADYAN M, et al. Evidence of price discovery on the Indonesian stock exchange [J]. Economic Modelling, 2019, 83: 2-7. |
[10] | BROWN G W, CLIFF M T. Investor sentiment and the near-term stock market [J]. Journal of Empirical Finance, 2004, 11(1): 1-27. |
[20] | FANG Y. Feature selection, deep neural network and trend prediction [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 297-307. |
[11] | RENAULT T. Intraday online investor sentiment and return patterns in the US stock market [J]. Journal of Banking & Finance, 2017, 84: 25-40. |
[21] | SPIRO A G, GOL’DOVSKAYA M D, KISELEVA N E, et al. Segmentation and hashing of time series in stock market prediction [J]. Automation and Remote Control, 2018, 79(5): 911-918. |
[12] | XIONG T, BAO Y K, HU Z Y. Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting [J]. Knowledge-Based Systems, 2014, 55: 87-100. |
[22] | ZHANG W, LIN S, ZHANG Y J. Intraday marketwide ups/Downs and returns [J]. Journal of Management Science and Engineering, 2016, 1(1): 28-57. |
[13] | KAO L J, CHIU C C, LU C J, et al. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting [J]. Decision Support Systems, 2013, 54(3): 1228-1244. |
[23] | ARROYO-FERN′ ANDEZ I, M′ ENDEZ-CRUZ C F, SIERRA G, et al. Unsupervised sentence representations as word information series: Revisiting TF-IDF [J]. Computer Speech & Language, 2019, 56: 107-129. |
[14] | LI S W, CHEN T, WANG L, et al. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index [J]. Tourism Management, 2018, 68: 116-126. |
[24] | CAO J, LI Z, LI J. Financial time series forecasting model based on CEEMDAN and LSTM [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 519: 127-139. |
[15] | YOU D, CHEN F. Research on the prediction of network public opinion based on improved PSO and BP neural network [J]. Journal of Intelligence, 2016, 35(8): 156-161 (in Chinese). |
[25] | ZHOU Z B, LIN L, LI S X. International stock market contagion: A CEEMDAN wavelet analysis [J]. Economic Modelling, 2018, 72: 333-352. |
[16] | DASH S R, MAITRA D. Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach [J]. Finance Research Letters, 2018, 26: 32-39. |
[26] | CHENG Z, LU Z X. Research on the PID control of the ESP system of tractor based on improved AFSA and improved SA [J]. Computers and Electronics in Agriculture, 2018, 148: 142-147. |
[17] | XIAO C J, CHEN N C, HU C L, et al. Short and midterm sea surface temperature prediction using timeseries satellite data and LSTM-AdaBoost combination approach [J]. Remote Sensing of Environment, 2019, 233: 111358. |
[27] | LI J P, DONG P W. Global maximum power point tracking for solar power systems using the hybrid artificial fish swarm algorithm [J]. Global Energy Interconnection, 2019, 2(4): 351-360. |
[18] | XU M J, SHANG P J, LIN A J. Cross-correlation analysis of stock markets using EMD and EEMD [J]. Physica A: Statistical Mechanics and Its Applications, 2016, 442: 82-90. |
[28] | WANG Y L. Stock market forecasting with financial micro-blog based on sentiment and time series analysis [J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(2): 173-179. |
[19] | SHARMA S S, THURAISAMY K, MADYAN M, et al. Evidence of price discovery on the Indonesian stock exchange [J]. Economic Modelling, 2019, 83: 2-7. |
[29] | OWUSU E, ZHAN Y Z, MAO Q R. A neuralAdaBoost based facial expression recognition system [J]. Expert Systems With Applications, 2014, 41(7): 3383-3390. |
[20] | FANG Y. Feature selection, deep neural network and trend prediction [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 297-307. |
[30] | YUAN G H, YANG W X. Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA) [J]. Energy, 2019, 183: 926-935. |
[21] | SPIRO A G, GOL’DOVSKAYA M D, KISELEVA N E, et al. Segmentation and hashing of time series in stock market prediction [J]. Automation and Remote Control, 2018, 79(5): 911-918. |
[22] | ZHANG W, LIN S, ZHANG Y J. Intraday marketwide ups/Downs and returns [J]. Journal of Management Science and Engineering, 2016, 1(1): 28-57. |
[23] | ARROYO-FERN′ ANDEZ I, M′ ENDEZ-CRUZ C F, SIERRA G, et al. Unsupervised sentence representations as word information series: Revisiting TF-IDF [J]. Computer Speech & Language, 2019, 56: 107-129. |
[24] | CAO J, LI Z, LI J. Financial time series forecasting model based on CEEMDAN and LSTM [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 519: 127-139. |
[25] | ZHOU Z B, LIN L, LI S X. International stock market contagion: A CEEMDAN wavelet analysis [J]. Economic Modelling, 2018, 72: 333-352. |
[26] | CHENG Z, LU Z X. Research on the PID control of the ESP system of tractor based on improved AFSA and improved SA [J]. Computers and Electronics in Agriculture, 2018, 148: 142-147. |
[27] | LI J P, DONG P W. Global maximum power point tracking for solar power systems using the hybrid artificial fish swarm algorithm [J]. Global Energy Interconnection, 2019, 2(4): 351-360. |
[28] | WANG Y L. Stock market forecasting with financial micro-blog based on sentiment and time series analysis [J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(2): 173-179. |
[29] | OWUSU E, ZHAN Y Z, MAO Q R. A neuralAdaBoost based facial expression recognition system [J]. Expert Systems With Applications, 2014, 41(7): 3383-3390. |
[30] | YUAN G H, YANG W X. Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA) [J]. Energy, 2019, 183: 926-935. |
[1] | 黄荣,常青,张扬. 无监督口腔内窥镜图像拼接算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 81-90. |
[2] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[3] | 田圆圆,金衍瑞,李志远,刘金磊,刘成良. 基于加权异构图谱的增量式疾病自动诊断方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 120-130. |
[4] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[5] | 侯舒娟,朱文萍,李海. 混合失真图像恢复的分阶段训练[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 793-801. |
[6] | 谢晨昊, 梁家卿, 肖仰华, HWANG Seung-won. 概念化的实体关系解释[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 695-702. |
[7] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[8] | . 基于场端RGB-D相机阵列的室内停车场车辆定位系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
[9] | . 外参标定的激光-视觉-惯性里程计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
[10] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[11] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 638-648. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 437-451. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 452-462. |
[15] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||