J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (3): 323-329.doi: 10.1007/s12204-023-2581-3
李国志a,邹水中b,丁数学a
收稿日期:
2022-08-27
修回日期:
2022-09-28
接受日期:
2023-05-28
出版日期:
2023-05-28
发布日期:
2023-05-22
LI Guozhiaa(李国志),ZOU Shuizhongb*(邹水中),DING Shuacuea(丁数学)
Received:
2022-08-27
Revised:
2022-09-28
Accepted:
2023-05-28
Online:
2023-05-28
Published:
2023-05-22
摘要: 本文主要研究一种用于鼻拭子机器人自动采样操作的视觉定位方法。使用机器人完成鼻拭子采样任务可以减少医务人员对新型冠状病毒病(COVID-19)患者的直接接触,从而减小COVID-19带来的负面影响,对COVID-19的检测和防疫具有重要意义。该方法根据COVID-19的传播特点使用层次决策网络来处理机器人的行为约束条件,并结合医务人员的采样动作特点设计了使用单臂机器人进行鼻拭子采样操作的视觉导航定位方法。该方法所使用的决策网络综合考虑了人工采样操作中引起潜在接触感染风险的影响因素,以尽可能降低病毒在人员之间的传播概率。进一步形成具有人工智能特征的视觉伺服控制策略,并完成稳定、安全的鼻拭子机器人采样操作。实验证明,该方法能够实现良好的机器人视觉系统的定位,可以为公共卫生防控提供必要的技术支持。
中图分类号:
李国志a,邹水中b,丁数学a. 基于层次决策网络的鼻拭子采样机器人视觉定位方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 323-329.
LI Guozhia a(李国志),ZOU Shuizhong b*(邹水中),DING Shuacue a(丁数学). Visual Positioning of Nasal Swab Robot Based on Hierarchical Decision[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 323-329.
[1] | CHEN A T, RYSKINA K L, JUNG H Y. Long-term care, residential facilities, and COVID-19: An overview of federal and state policy responses [J]. Journal of the American Medical Directors Association, 2020, 21(9): 1186-1190. |
[2] | FISHER D, HEYMANN D. Q&A: The novel coronavirus outbreak causing COVID-19 [J]. BMC Medicine, 2020, 18(1): 57. |
[3] | TSIKALA VAFEA M, ATALLA E, GEORGAKAS J, et al. Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19 [J]. Cellular and Molecular Bioengineering, 2020, 13(4): 249-257. |
[4] | DING W P, NAYAK J, SWAPNAREKHA H, et al. Fusion of intelligent learning for COVID-19: A state-of-the-art review and analysis on real medical data [J]. Neurocomputing, 2021, 457: 40-66. |
[5] | NAREN N, CHAMOLA V, BAITRAGUNTA S, et al. IoMT and DNN-enabled drone-assisted COVID-19 screening and detection framework for rural areas [J]. IEEE Internet of Things Magazine, 2021, 4(2): 4-9. |
[6] | WANG X V, WANG L H. A literature survey of the robotic technologies during the COVID-19 pandemic [J]. Journal of Manufacturing Systems, 2021, 60: 823-836. |
[7] | WU S Z, WU D D, YE R Z, et al. Pilot study of robot-assisted teleultrasound based on 5G network: A new feasible strategy for early imaging assessment during COVID-19 pandemic [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(11): 2241-2248. |
[8] | XIE Z X, CHEN B H, LIU J Q, et al. A tapered soft robotic oropharyngeal swab for throat testing: A new way to collect sputa samples [J]. IEEE Robotics & Automation Magazine, 2021, 28(1): 90-100. |
[9] | PETRUZZI G, DE VIRGILIO A, PICHI B, et al. COVID-19: Nasal and oropharyngeal swab [J]. Head & Neck, 2020, 42(6): 1303-1304. |
[10] | MCDERMOTT A. Inner Workings: Researchers race to develop in-home testing for COVID-19, a potential game changer [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42): 25956-25959. |
[11] | LI Z, FEILING J, REN H L, et al. A novel teleoperated flexible robot targeted for minimally invasive robotic surgery [J]. Engineering, 2015, 1(1): 73-78. |
[12] | SEO J, SHIM S, PARK H, et al. Development of robot-assisted untact swab sampling system for upper respiratory disease [J]. Applied Sciences, 2020, 10(21): 7707. |
[13] | SHI F, WANG J, SHI J, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19 [J]. IEEE Reviews in Biomedical Engineering, 2021, 14: 4-15. |
[14] | HUSSAIN K, WANG X S, OMAR Z, et al. Robotics and artificial intelligence applications in manage and control of COVID-19 pandemic [C]//2021 International Conference on Computer, Control and Robotics. Shanghai: IEEE, 2021: 66-69. |
[15] | MBUNGE E, MILLHAM R C, SIBIYA M N, et al. Framework for ethical and acceptable use of social distancing tools and smart devices during COVID-19 pandemic in Zimbabwe [J]. Sustainable Operations and Computers, 2021, 2: 190-199. |
[16] | MEI X Y, LEE H C, DIAO K Y, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 [J]. Nature Medicine, 2020, 26(8): 1224-1228. |
[17] | XU X B, YANG Y M, ZHOU Y Y, et al. Image segmentation of throat swab sampling based on mask R-CNN [C]//2020 Chinese Automation Congress. Shanghai: IEEE, 2020: 7451-7455. |
[18] | ZHAO Z Y, WANG T, WANG D Q. Inverse kinematic analysis of the general 6R serial manipulators based on unit dual quaternion and Dixon resultant [C]//2017 Chinese Automation Congress. Jinan: IEEE, 2017: 2646-2650. |
[19] | HE R B, ZHAO Y J, YANG S N, et al. Kinematic-parameter identification for serial-robot calibration based on POE formula [J]. IEEE Transactions on Robotics, 2010, 26(3): 411-423. |
[20] | STONE H, SANDERSON A. A prototype arm signature identification system [C]//1987 IEEE International Conference on Robotics and Automation. Raleigh: IEEE, 1987: 175-182. |
[21] | WU L, YANG X D, CHEN K, et al. A minimal POE-based model for robotic kinematic calibration with only position measurements [J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 758-763. |
[22] | ASPRAGATHOS N A, DIMITROS J K. A comparative study of three methods for robot kinematics [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1998, 28(2): 135-145. |
[23] | WANG W, WANG G, YUN C. A calibration method of kinematic parameters for serial industrial robots [J]. Industrial Robot: An International Journal, 2014, 41(2): 157-165. |
[24] | HAGN U, KONIETSCHKE R, TOBERGTE A, et al DLR MiroSurge: A versatile system for research in endoscopic telesurgery [J]. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(2): 183-193. |
[25] | CHEN S F, KAO I. Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers [J]. The International Journal of Robotics Research, 2000, 19(9): 835-847. |
[26] | WANG Y N, XU Z C, ZHAO H C, et al. M-region segmentation of pharyngeal swab image based on improved U-net model [C]//2021 IEEE International Conference on Intelligence and Safety for Robotics. Tokoname: IEEE, 2021: 186-190. |
[27] | PARK F C, OKAMURA K. Kinematic calibration and the product of exponential formula [M]// Advance in robot kinematics and computational geometry. Dordrecht: Springer, 1994: 119-128. |
[1] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[2] | 李坚1,王星超1,钟敏2,郑剑2,孙正隆1. 基于实时切片到体积配准的机器人辅助甲状腺活检自主导航[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 330-338. |
[3] | 张凯波1,陈丽1,董琦2. 输入受限的超冗余移动医疗机械臂混合控制[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 348-359. |
[4] | 高红岩1, 2,艾孝杰1, 2,孙正隆3,陈卫东1, 2,高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[5] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[6] | 陈韦池1,刘浩城1,李子建1,郭靖1, 2,翟振坤3,孟伟1, 2. 一种基于双螺纹斜齿轮管的新型同心圆管机器人[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 296-306. |
[7] | 李林霖,高飞扬,郑雄飞,张黎明,李世杰,王赫然. 多结构柔性夹持器提高夹持的鲁棒性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 307-311. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 383-392. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 36-44. |
[15] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 45-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||