J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (3): 298-305.doi: 10.1007/s12204-021-2296-2
XU Jiangchang1 (许江长), HE Shamin2 (何莎敏), YU Dedong2 (于德栋), WU Yiqun2 (吴轶群), CHEN Xiaojun1,3 (陈晓军)
出版日期:
2021-06-28
发布日期:
2021-06-02
通讯作者:
CHEN Xiaojun(陈晓军)
E-mail:xiaojunchen@sjtu.edu.cn
XU Jiangchang1 (许江长), HE Shamin2 (何莎敏), YU Dedong2 (于德栋), WU Yiqun2 (吴轶群), CHEN Xiaojun1,3 (陈晓军)
Online:
2021-06-28
Published:
2021-06-02
Contact:
CHEN Xiaojun(陈晓军)
E-mail:xiaojunchen@sjtu.edu.cn
Supported by:
摘要: Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the margin of the maxillary sinus, and its boundary is blurred. Common segmentation methods are usually performed manually by experienced doctors, and are complicated by challenges such as low efficiency and low precision. In this study, an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution (ASPC) network. The ASPC module was adopted using residual connections to compose multiple atrous convolutions, which could extract more features on multiple scales. Subsequently, a segmentation network of the BG region with multiple ASPC modules was established, which effectively improved the segmentation performance. Although the training data were insufficient, our networks still achieved good auto-segmentation results, with a dice coefficient (Dice) of 87.13%, an Intersection over Union (Iou) of 78.01%, and a sensitivity of 95.02%. Compared with other methods, our method achieved a better segmentation effect, and effectively reduced the misjudgement of segmentation. Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’ work efficiency, which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.
中图分类号:
XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305.
XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305.
[1] | NIU |
L X, WANG J, YU H J, et al. New classification of maxillary sinus contours and | |
its relation to sinus floor elevation surgery [J]. Clinical Implant Dentistry and | |
Related Research, 2018, 20(4): 493-500. | |
[2] | |
HUANG J, HU J H, LUO R C, et al. Linear measurements of sinus floor elevation | |
based on voxel-based superimposition of cone beam computed tomography images | |
[J] | Clinical Implant Dentistry and Related Research, 2019, 21(5): 1048-1053. |
[3] | |
GERRESSEN M, RIEDIGER D, HILGERS R D, et al. The volume behavior of autogenous | |
iliac bone grafts after sinus floor elevation: A clinical pilot study [J]. The | |
Journal of Oral Implantology, 2015, 41(3): 276- 283. | |
[4] | |
KIRMEIER R, PAYER M, WEHRSCHUETZ M, et al. Evaluation of three-dimensional | |
changes after sinus floor augmentation with different grafting materials [J]. | |
Clinical Oral Implants Research, 2008, 19(4): 366-372. | |
[5] | |
OKADA T, KANAI T, TACHIKAWA N, et al. Longterm radiographic assessment of | |
maxillary sinus floor augmentation using beta-tricalcium phosphate: Analysis by | |
cone-beam computed tomography [J]. International Journal of Implant Dentistry, | |
20 | 16, 2(1): 1-9. |
[6] | |
BERBERI A, BOUSERHAL L, NADER N, et al. Evaluation of three-dimensional | |
volumetric changes after sinus floor augmentation with mineralized cortical bone | |
allograft [J]. Journal of Maxillofacial and Oral Surgery, 2015, 14(3): 624-629. | |
[7] | |
MAZZOCCO F, LOPS D, GOBBATO L, et al. Threedimensional volume change of grafted | |
bone in the maxillary sinus [J]. The International Journal of Oral & Maxillofacial | |
Implants, 2014, 29(1): 178-184. | |
[8] | |
GULTEKIN B A, BORAHAN O, SIRALI A, et al. Three-dimensional assessment of | |
volumetric changes in sinuses augmented with two different bone substitutes [J]. | |
BioMed Research International, 2016, 2016: 4085079. | |
[9] | |
LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical | |
image analysis [J]. Medical Image Analysis, 2017, 42: 60-88. | |
[10] | |
CHARTRAND G, CHENG P M, VORONTSOV E, et al. Deep learning: A primer for | |
radiologists [J]. Radio- Graphics, 2017, 37(7): 2113-2131. | |
[11] | |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic | |
segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, | |
17, 39(4): 640-651. | |
[12] | |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical | |
image segmentation [C]//Proceedings of the International Conference on Medical | |
Image Computing and Computer- Assisted Intervention. Cham: Springer, 2015: | |
23 | 4-241. |
[13] | |
MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks | |
for volumetric medical image segmentation [C]//Proceedings of the IEEE Fourth | |
International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. | |
[14] | QIU |
B J, GUO J P, KRAEIMA J, et al. Automatic segmentation of the mandible from | |
computed tomography scans for 3D virtual surgical planning using the convolutional | |
neural network [J]. Physics in Medicine and Biology, 2019, 64(17): 175020. | |
[15] | CUI |
Z M, LI C J, WANG W P. ToothNet: automatic tooth instance segmentation and | |
identification from cone beam CT images [C]//Proceedings of the IEEE/CVF Conference | |
on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 6358-6377. | |
[16] | |
CHEN F, LIU J, ZHAO Z, et al. Three-dimensional feature-enhanced network for | |
automatic femur segmentation [J]. IEEE Journal of Biomedical and Health Informatics, | |
20 | 19, 23(1): 243-252. |
[17] | |
AMBELLAN F, TACK A, EHLKE M, et al. Automated segmentation of knee bone and | |
cartilage combining statistical shape knowledge and convolutional neural | |
networks: Data from the Osteoarthritis Initiative [J]. Medical Image Analysis, | |
19, 52: 109-118. | |
[18] | |
ZHANG J, LIU M X, WANG L, et al. Context-guided fully convolutional networks | |
for joint craniomaxillofacial bone segmentation and landmark digitization [J]. Medical | |
Image Analysis, 2020, 60: 101621. | |
[19] | XU |
J C, WANG S M, ZHOU Z J, et al. Automatic CT image segmentation of maxillary | |
sinus based on VGG network and improved V-Net [J]. International Journal of | |
Computer Assisted Radiology and Surgery, 2020, 15(9): 1457-1465. | |
[20] | YU |
F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. | |
(2016-04-30) [2020- 08-10]. https://arxiv.org/pdf/1511.07122.pdf. | |
[21] | |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation | |
with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. | |
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): | |
83 | 4-848. |
[22] | GU Z W, CHENG J, FU H Z, et al. CE-Net: |
Context encoder network for 2D medical image segmentation [J]. IEEE | |
Transactions on Medical Imaging, 2019, 38(10): 2281-2292. [23] LI Q F, SHEN L | |
L. 3D neuron reconstruction in tangled neuronal image with deep networks [J]. | |
IEEE Transactions on Medical Imaging, 2020, 39(2): 425- 435. |
[1] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[2] | 王雨坤, 丁显廷, 张执南. 基于四电极微流控装置使用介电泳分离循环肿瘤细胞的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 391-. |
[3] | 贺雨欣, 张文光, 胥浩天, 徐倚帆, 许李悦. 用于评价神经电极植入行为的精细化脑模型的建立及其模拟行为研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 401-. |
[4] | 吴辉,富荣昌,杨晓玉,李现政,王召耀. 三种不同血液粘度模型中分叉血流的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 450-. |
[5] | 胡颖涵1, 朱泽宇1, 滕 林2, 何雨石3, 邹德荣1 , 陆家瑜1. 多肽水凝胶在软骨再生工程中的应用[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 468-. |
[6] | 李健1, 2,朱晔1,关天民1. 考虑肌肉因素的脊柱侧弯矫正的数值模拟方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 486-. |
[7] | 刘阳1,2,王雅靖1,温大渭1,张全有1,王立1,安美文1,刘勇3. 基底刚度和拓扑结构对人体皮肤成纤维细胞形态的影响[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 495-. |
[8] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[9] | 贾菁怡1,李正裔1, 2,彭琳晶1,姚怡飞1. 深部组织压力损伤的早期检测方法:系统综述[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 526-. |
[10] | 高红岩1, 2, 艾孝杰1, 2, 孙正隆3, 陈卫东1, 2, 高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 168-175. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[15] | CHENG Rongshan, (程荣山), JIANG Ziang, (蒋子昂), DIMITRIOU Dimitris, GONG Weihua, (龚伟华), TSAI Tsung-Yuan, (蔡宗远). Biomechanical Analysis of Personalised 3D-Printed Clavicle Plates of Different Materials to Treat Midshaft Clavicle Fractures[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 259-266. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 446
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||