J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (3): 290-297.doi: 10.1007/s12204-021-2295-3
JING Mengjiea (荆梦杰), CUI Zhixina (崔志鑫), FU Hanga (傅航), CHEN Xiaojuna,b (陈晓军)
出版日期:
2021-06-28
发布日期:
2021-06-02
通讯作者:
CHEN Xiaojun(陈晓军)
E-mail:xiaojunchen@sjtu.edu.cn
基金资助:
JING Mengjiea (荆梦杰), CUI Zhixina (崔志鑫), FU Hanga (傅航), CHEN Xiaojuna,b (陈晓军)
Online:
2021-06-28
Published:
2021-06-02
Contact:
CHEN Xiaojun(陈晓军)
E-mail:xiaojunchen@sjtu.edu.cn
Supported by:
摘要: Virtual reality-based
surgery simulation is becoming popular with the development of minimally
invasive abdominal surgery, where deformable soft tissue is
modelled and simulated. The mass-spring model (MSM) and finite
element method (FEM) are common methods used in the simulation of soft tissue
deformation. However, MSM has an issue concerning accuracy, while FEM has a
problem with efficiency. To achieve higher accuracy and efficiency at
the same time, we applied a co-rotational FEM in the simulation of a kidney
with a tumour inside, achieving a real-time and accurate deformation
simulation. In addition, we set a multi-model representation for mechanical
simulation and visual rendering. The implicit Euler method and conjugate
gradient method were adopted for setting and solving the linear system. For
a realistic simulation of surgery, constraints outside the kidney and
between the kidney and tumour were set with two series of mechanical properties
for the two models. Experiments were conducted to validate the accuracy
and real-time performance.
中图分类号:
JING Mengjie (荆梦杰), CUI Zhixin (崔志鑫), FU Hang (傅航), CHEN Xiaojun (陈晓军). Real-Time Deformation Simulation of Kidney Surgery Based on Virtual Reality[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 290-297.
JING Mengjie (荆梦杰), CUI Zhixin(崔志鑫), FU Hang (傅航), CHEN Xiaojun (陈晓军). Real-Time Deformation Simulation of Kidney Surgery Based on Virtual Reality[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 290-297.
[1] | |
ANTONIOU S A, ANTONIOU G A, ANTONIOU A I, et al. Past, present, and future of | |
minimally invasive abdominal surgery [J]. Journal of the Society of Laparoendoscopic | |
Surgeons, 2015, 19(3): e2015.00052. | |
[2] | |
BERNHARDT S, NICOLAU S A, SOLER L, et al. The status of augmented reality in | |
laparoscopic surgery as of 2016 [J]. Medical Image Analysis, 2017, 37: 66-90. | |
[3] | DUAN |
Y P, HUANG W M, CHANG H B, et al. Volume preserved mass–spring model with novel | |
constraints for soft tissue deformation [J]. IEEE Journal of Biomedical and | |
Health Informatics, 2016, 20(1): 268- 280. | |
[4] | |
NEALEN A, M¨ULLER M, KEISER R, et al. Physically based deformable models in | |
computer graphics [J]. Computer Graphics Forum, 2006, 25(4): 809-836. | |
[5] | |
ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. Field problems: A multidimensional finite | |
element method [M]//The finite element method: Its basis and fundamentals. Amsterdam: | |
Elsevier, 2013: 115-149. | |
[6] | DE |
S, KIM J, LIM Y J, et al. The point collocationbased method of finite spheres | |
(PCMFS) for real time surgery simulation [J]. Computers & Structures, 2005, | |
83 | (17/18): 1515-1525. |
[7] | |
FREUTEL M, SCHMIDT H, D¨URSELEN L, et al. Finite element modeling of soft | |
tissues: Material models, tissue interaction and challenges [J]. Clinical | |
Biomechanics, 2014, 29(4): 363-372. | |
[8] | |
COURTECUISSE H, JUNG H, ALLARD J, et al. GPU-based real-time soft tissue | |
deformation with cutting and haptic feedback [J]. Progress in Biophysics and | |
Molecular Biology, 2010, 103(2/3): 159-168. | |
[9] | |
COURTECUISSE H, ALLARD J, KERFRIDEN P, et al. Real-time simulation of contact | |
and cutting of heterogeneous soft-tissues [J]. Medical Image Analysis, 2014, | |
18 | (2): 394-410. |
[10] | |
PLANTEF`EVE R, PETERLIK I, HAOUCHINE N, et al. Patient-specific biomechanical | |
modeling for guidance during minimally-invasive hepatic surgery [J]. Annals of Biomedical | |
Engineering, 2016, 44(1): 139-153. | |
[11] | |
HELLER N, SATHIANATHEN N, KALAPARA A, et al. The KiTS19 challenge data: 300 | |
kidney tumor cases with clinical context, CT semantic segmentations, and | |
surgical outcomes [EB/OL]. [2020-12-02]. https://arxiv.org/pdf/1904.00445v2.pdf. | |
[12] | |
NEWMAN T S, YI H. A survey of the marching cubes algorithm [J]. Computers & | |
Graphics, 2006, 30(5): 854-879. | |
[13] | |
GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics | |
[C] | //Proceedings of the 24th Annual Conference on Computer Graphics and Interactive |
Techniques. New York: ACM Press, 1997: 209-216. | |
[14] | JU |
T, LOSASSO F, SCHAEFER S, et al. Dual contouring of hermite data | |
[C] | //Proceedings of the 29th Annual Conference on Computer Graphics and |
Interactive Techniques. New York: ACM Press, 2002: 339- 346. | |
[15] | |
NESME M, PAYAN Y, FAURE F. Efficient, physically plausible finite elements | |
[EB/OL]. [2020-12-02]. https://hal.inria.fr/inria-00394480v1/document. | |
[16] | |
FAURE F, DURIEZ C, DELINGETTE H, et al. SOFA: A multi-model framework for | |
interactive physical simulation [M]//Soft tissue biomechanical modeling for computer | |
assisted surgery. Berlin, Heidelberg: Springer, 2012: 283-321. | |
[17] | |
BARAFF D, WITKIN A. Large steps in cloth simulation [C]//Proceedings of the | |
25 | th Annual Conference on Computer Graphics and Interactive Techniques. New |
York: ACM Press, 1998: 43-54. | |
[18] | SHEWCHUK J R. An introduction to the |
conjugate gradient method without the agonizing pain [R]. Schenley Park | |
Pittsburgh, PA, USA: Carnegie Mellon University, 1994. |
[1] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[2] | 王雨坤, 丁显廷, 张执南. 基于四电极微流控装置使用介电泳分离循环肿瘤细胞的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 391-. |
[3] | 贺雨欣, 张文光, 胥浩天, 徐倚帆, 许李悦. 用于评价神经电极植入行为的精细化脑模型的建立及其模拟行为研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 401-. |
[4] | 吴辉,富荣昌,杨晓玉,李现政,王召耀. 三种不同血液粘度模型中分叉血流的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 450-. |
[5] | 胡颖涵1, 朱泽宇1, 滕 林2, 何雨石3, 邹德荣1 , 陆家瑜1. 多肽水凝胶在软骨再生工程中的应用[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 468-. |
[6] | 李健1, 2,朱晔1,关天民1. 考虑肌肉因素的脊柱侧弯矫正的数值模拟方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 486-. |
[7] | 刘阳1,2,王雅靖1,温大渭1,张全有1,王立1,安美文1,刘勇3. 基底刚度和拓扑结构对人体皮肤成纤维细胞形态的影响[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 495-. |
[8] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[9] | 贾菁怡1,李正裔1, 2,彭琳晶1,姚怡飞1. 深部组织压力损伤的早期检测方法:系统综述[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 526-. |
[10] | 高红岩1, 2, 艾孝杰1, 2, 孙正隆3, 陈卫东1, 2, 高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 168-175. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[15] | CHENG Rongshan, (程荣山), JIANG Ziang, (蒋子昂), DIMITRIOU Dimitris, GONG Weihua, (龚伟华), TSAI Tsung-Yuan, (蔡宗远). Biomechanical Analysis of Personalised 3D-Printed Clavicle Plates of Different Materials to Treat Midshaft Clavicle Fractures[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 259-266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||