J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1255-1264.doi: 10.1007/s12204-023-2674-z
收稿日期:2022-11-10
接受日期:2023-05-24
出版日期:2025-11-21
发布日期:2023-12-01
陈国权,李裕钦,黄子珂,杨神化
Received:2022-11-10
Accepted:2023-05-24
Online:2025-11-21
Published:2023-12-01
摘要: 为了实现欠驱动无人水面船舶(USV)的航迹跟踪和避碰功能,构建了基于模型预测控制的自主导航模型,其中包括航迹偏移、速度变化和规则遵从性作为评估函数,以及动态/静态导航障碍的船舶领域和机械特性限制作为约束条件。通过多组仿真实验验证了该模型在多船遭遇情况下以及存在动态和静态障碍物的复杂水域中对USV自主导航的有效性。仿真结果表明,所提出的模型能够在复杂水域下实现欠驱动USV自主导航。
中图分类号:
. 基于模型预测控制的欠驱动USV自主航行模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1255-1264.
CHEN Guoquan, LI Yuqin, HUANG Zike, YANG Shenhua. Autonomous Navigation Algorithm for Underactuated Unmanned Surface Vehicle Based on Model Predictive Control[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1255-1264.
| [1] XU H T, HINOSTROZA M A, GUEDES SOARES C. Modified vector field path-following control system for an underactuated autonomous surface ship model in the presence of static obstacles [J]. Journal of Marine Science and Engineering, 2021, 9(6): 652. [2] XIA G Q, HAN Z W, ZHAO B. Local path planning for USV based on improved quantum particle swarm optimization [C]//2019 Chinese Automation Congress. Hangzhou: IEEE, 2019: 714-719. [3] REN J A, ZHANG J, CUI Y N. Autonomous obstacle avoidance algorithm for unmanned surface vehicles based on an improved velocity obstacle method [J]. ISPRS International Journal of Geo-Information, 2021, 10(9): 618. [4] XU X L, PAN W, HUANG Y B, et al. Dynamic collision avoidance algorithm for unmanned surface vehicles via layered artificial potential field with collision cone [J]. Journal of Navigation, 2020, 73(6): 1306-1325. [5] CHEN Y L, BAI G Q, ZHAN Y, et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning [J]. IEEE Access, 2021, 9: 40728-40742. [6] LYU H G, YIN Y. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields [J]. Journal of Navigation, 2019, 72(3): 588-608. [7] SHEN H Q, HASHIMOTO H, MATSUDA A, et al. Automatic collision avoidance of multiple ships based on deep Q-learning [J]. Applied Ocean Research, 2019, 86: 268-288. [8] XIE S, GAROFANO V, CHU X, et al. Model predictive ship collision avoidance based on Q-learning beetle swarm antenna search and neural networks [J]. Ocean Engineering, 2019, 193: 106609. [9] CHEN Z, ZHANG Y M, ZHANG Y G, et al. A hybrid path planning algorithm for unmanned surface vehicles in complex environment with dynamic obstacles [J]. IEEE Access, 2019, 7: 126439-126449. [10] ERIKSEN B O H, BREIVIK M, PETTERSEN K Y, et al. A modified dynamic window algorithm for horizontal collision avoidance for AUVs [C]//2016 IEEE Conference on Control Applications. Buenos Aires: IEEE, 2016: 499-506. [11] JOHANSEN T A, PEREZ T, CRISTOFARO A. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3407-3422. [12] HAGEN I B. Collision avoidance for ASVs using model predictive control [D]. Trondheim: Norwegian University of Science and Technology, 2017. [13] ERIKSEN B O H, BITAR G, BREIVIK M, et al. Hybrid collision avoidance for ASVs compliant with COLREGs rules 8 and 13–17 [J]. Frontiers in Robotics and AI, 2020, 7: 11. [14] SUN X J, WANG G F, FAN Y S, et al. Collision avoidance using finite control set model predictive control for unmanned surface vehicle [J]. Applied Sciences, 2018, 8(6): 926. [15] YASUKAWA H, YOSHIMURA Y. Introduction of MMG standard method for ship maneuvering predictions [J]. Journal of Marine Science and Technology, 2015, 20(1): 37-52. [16] CHEN Z J. Ship path tracking control based on model predictive control method [D]. Dalian: Dalian Maritime University, 2020 (in Chinese). [17] BLENDERMANN W. Parameter identification of wind loads on ships [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(3): 339-351. [18] NIENHUIS I U. Simulations of low frequency motions of dynamically positioned offshore structures [J]. Royal Institution of Naval Architects Transactions, 1987, 129: 1-19. [19] LEE J H. Modeling and identification for nonlinear model predictive control: Requirements, current status and future research needs[M]//Nonlinear model predictive control. Basel: Birkhäuser, 2000: 269-293. [20] XIE H W, ZHANG Y J, XING S W, et al. A method for ship autonomous collision avoidance based on model predictive control [J]. Ship Engineering, 2021, 43(8): 23-28 (in Chinese). |
| [1] | 曹永吉, 张江丰, 王天宇, 郑可轲, 吴秋伟. 基于分布式模型预测控制的自适应二次调频策略[J]. 上海交通大学学报, 2025, 59(3): 333-341. |
| [2] | . 基于数据驱动的永磁同步电机控制系统模型预测控制方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 270-279. |
| [3] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
| [4] | 邱革非, 冯泽华, 沈赋, 何超, 何虹辉, 刘铠铭. 考虑车网互动的园区电网动态双层能量管理策略[J]. 上海交通大学学报, 2024, 58(6): 916-925. |
| [5] | 张啸天1,何德峰1,廖飞2. 复杂环境及约束下舰载机自动着舰迭代模型预测控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 712-724. |
| [6] | 穆建彬,杨海丽,何德峰. 基于控制屏障函数的自主移动机器人安全编队分布式模型预测控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 678-688. |
| [7] | 蔡振华, 黎灿兵, 阳同光, 魏娟, 葛睿, 李立雄. 考虑动态频率惯量特性的储能电池参与电网一次调频控制[J]. 上海交通大学学报, 2024, 58(12): 1946-1956. |
| [8] | 何宇, 欧阳子路, 邹璐, 陈伟民, 邹早建. 基于矢量场制导法和模型预测控制的船舶路径跟踪与避碰[J]. 上海交通大学学报, 2024, 58(11): 1644-1653. |
| [9] | 刘传斌, 矫文书, 吴秋伟, 陈健, 周前. 基于模型预测控制的风储联合电场参与电网二次调频策略[J]. 上海交通大学学报, 2024, 58(1): 91-101. |
| [10] | 姜恩宇, 陈宇, 施峥靖, 吴哲城, 林顺富, 李东东. 考虑碳配额引导需求响应的微电网能量管理策略[J]. 上海交通大学学报, 2023, 57(9): 1126-1136. |
| [11] | 奚鑫泽, 邢超, 覃日升, 何廷一, 和鹏, 孟贤, 程春辉. 含双馈风力发电系统的配电网短路电流特性[J]. 上海交通大学学报, 2023, 57(7): 921-927. |
| [12] | 张晨宇, 孟帅. 基于模型预测控制的深海钻井立管再入井仿真分析[J]. 上海交通大学学报, 2023, 57(11): 1389-1399. |
| [13] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
| [14] | 沈阳武, 宋兴荣, 罗紫韧, 沈非凡, 黄晟. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293. |
| [15] | 李彪, 王立文, 邢志伟, 王思博, 罗谦. 飞机地面除冰资源协同控制[J]. 上海交通大学学报, 2021, 55(11): 1362-1370. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||