上海交通大学学报(英文版) ›› 2012, Vol. 17 ›› Issue (3): 306-311.doi: 10.1007/s12204-012-1274-0
SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2 SHAN De-bin2 (单德斌), LI Shu1 (李澍)
出版日期:
2012-06-30
发布日期:
2012-11-15
通讯作者:
SHEN Yu1 (申昱)
E-mail:shenyu@sjtu.edu.cn
SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2 SHAN De-bin2 (单德斌), LI Shu1 (李澍)
Online:
2012-06-30
Published:
2012-11-15
Contact:
SHEN Yu1 (申昱)
E-mail:shenyu@sjtu.edu.cn
摘要: The miniaturization of products requires the mass production of microparts. The microforming can well meet this requirement. Due to the emergence of decreasing flow stress scale effect in the micro scale, the traditional forming process and theory may fail. Based on the crystal plasticity theory, upsetting tests of micro copper cylinders with different dimensions and grain sizes were simulated, and the decreasing flow stress scale effect was studied and discussed. Results show that with the decrease of billet dimensions, the flow stress is gradually decreased, and the decreasing flow stress scale effect is emerged; with the increase of grain size, the decreasing flow stress scale effect is more remarkable. It can also be seen that the decreasing flow stress scale effect can be well simulated with the crystal plasticity theory, and the necessary relevant information is provided for deeper understanding on this scale effect, as well as the design of processes and die structures in the microforming.
中图分类号:
SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2. Simulation and Discussion on the Decreasing Flow Stress Scale Effect[J]. 上海交通大学学报(英文版), 2012, 17(3): 306-311.
SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2. Simulation and Discussion on the Decreasing Flow Stress Scale Effect[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(3): 306-311.
[1] Geiger M, Kleiner M, Eckstein R, et al. Microforming [J]. Annals of the CIRP, 2001, 50(2): 445-462.[2] Geiger M, Vollertsen F, Kals R. Fundamentals on the manufacturing of sheet metal microparts [J].Annals of the CIRP, 1996, 45(1): 277-282.[3] Engel U, Egerer E. Basic research on cold and warm forging of microparts [J]. Key Engineering Materials,2003, 233-236: 449-456.[4] Engel U, Eckstein R. Microforming from basic research to its realization [J]. Journal of Materials ProcessingTechnology, 2002, 125-126: 35-44.[5] Raulea L V, Govaert L E, Baaijens F P T. Grain and specimen size effects in processingmetal sheets[C]//Proceedings of the 6th ICTP. Berlin:Springer-Verlag, 1999: 939-944.[6] Chan W L, Fu M W, Lu J. Experimental and simulation study of deformation behavior in microcompoundextrusion process [J]. Materials and Design,2011, 32(2): 525-534.[7] Chan W L, Fu M W, Yang B. Study of size effect in micro-extrusion process of pure copper [J]. Materialsand Design, 2011, 32(7): 3772-3782.[8] Chan W L, Fu M W. Experimental studies and numerical modeling of the specimen and grain size effectson the flow stress of sheet metal in microforming [J]. Materials Science and Engineering A, 2011, 528:7674-7683.[9] Wang Zi-qiang, Duan Zhu-ping. Meso-plasticity mechanics [M]. Beijing: Science Publishing House, 1995(in Chinese).[10] Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metallmater, 1983, 31(12): 1951-1976.[11] GB/T 7314-2005, Metallic materials-compression testing [S].[12] Borxin P I. Physical basis of plastic deformation [M].Huang Ke-qing (trans.). Beijing: Metallurgical Industry Press, 1989 (in Chinese).[13] Yang Jue-xian. Physical basis of metal plastic deformation [M]. Beijing: Metallurgical Industry Press,1988 (in Chinese).[14] Jiang Z H, Lian J S, Baudelet B. A dislocation density approximation for the flow stress-grain size relationof polycrystals [J]. Acta Metallurgicaet Materialia,1995, 43(9): 3349-3360. |
[1] | WEN Xiaofei, ZHOU Ruiping, YUAN Qiang, LEI Junsong . Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 463-469. |
[2] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[3] | JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu. Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55. |
[4] | ZHAO Peipei (赵培培), WANG Lipo* (王利坡). Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence[J]. sa, 2018, 23(1): 190-201. |
[5] | XIAO Xiao (肖潇), ZHANG Yangqing (张扬清), LI Mingguang* (李明广), WANG Jianhua (王建华). Responses of the Strata and Supporting System to Dewatering in Deep Excavations[J]. 上海交通大学学报(英文版), 2017, 22(6): 705-711. |
[6] | ZHEN Lianga (甑亮), CHEN Jinjiana* (陈锦剑), . Effect of Orthogonal Stiffeners on the Stability of Axially Compressed Steel Jacking Pipe[J]. 上海交通大学学报(英文版), 2017, 22(5): 536-540. |
[7] | WANG Huaming1,3 (王化明), SHENG Xue1 (盛学), WANG Shilai2* (王世来), CHEN Lin2 (陈林),YUAN. Numerical Study on Water Depth Effects on Hydrodynamic Forces Acting on Berthing Ships[J]. 上海交通大学学报(英文版), 2017, 22(2): 198-205. |
[8] | 宋金龙,赵亦希,于忠奇,孔庆帅. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1304-1311. |
[9] | SUI Da-shan*(隋大山), GAO Liang (高 亮), CUI Zhen-shan (崔振山). Microstructure Evolution of Different Forging Processes for 12%Cr Steel During Hot Deformation[J]. 上海交通大学学报(英文版), 2015, 20(5): 606-611. |
[10] | NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊). Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone[J]. 上海交通大学学报(英文版), 2013, 18(6): 729-732. |
[11] | ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597. |
[12] | LI Ke1,2* (李 科), WANG Ying-yi3 (王颖轶), HUANG Xing-chun2,3 (黄醒春). Regression Analysis of Initial Stress Field Around Faults Based on Fault Throw by Displacement Discontinuity Method[J]. 上海交通大学学报(英文版), 2013, 18(4): 474-478. |
[13] | TANG Wei-qin (唐伟琴), HUANG Shi-yao (黄诗尧), ZHANG Shao-rui (张少睿), LI Da-yong (李大永),. Polycrystalline Behavior Analysis of Extruded Magnesium Alloy AZ31[J]. 上海交通大学学报(英文版), 2013, 18(2): 186-189. |
[14] | ZENG Zhuo-xiong (曾卓雄), CHEN Chao-jie (陈超杰). Fluctuation Velocity Correlation Closure Model for Dense Gas-Particle Turbulent Flow[J]. 上海交通大学学报(英文版), 2012, 17(4): 447-451. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||