Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (Sup. 1): 50-55.doi: 10.1007/s12204-018-2022-x
JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu (黄晓宇)
发布日期:
2018-12-26
通讯作者:
JIN Xudong (金旭东)
E-mail: jinxudong@micropowers.com
JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu (黄晓宇)
Published:
2018-12-26
Contact:
JIN Xudong (金旭东)
E-mail: jinxudong@micropowers.com
摘要: The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics (CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127W/(m2 ·K) and 192W/(m2 ·K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.
中图分类号:
JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu. Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55.
JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu (黄晓宇). Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55.
[1] | KONGTRAGOOL B, WONGWISES S. Performanceof a twin power piston low temperature differentialStirling engine powered by a solar simulator [J]. SolarEnergy, 2007, 81(7): 884-895. |
[2] | SONG Z C, CHEN J M, YANG L. Heat transferenhancement in tubular heater of Stirling engine forwaste heat recovery from flue gas using steel wool [J].Applied Thermal Engineering, 2015, 87: 499-504. |
[3] | SOLOMON L, QIU S G. Computational analysis ofexternal heat transfer for a tubular Stirling convertor[J]. Applied Thermal Engineering, 2018, 137: 134-141. |
[4] | LI K, YU G Y, ZHANG Y B, et al. Research on 1kW class free piston Stirling generator [J]. Journal ofEngineering Thermophysics, 2014, 35(7): 1270-1274(in Chinese). |
[5] | WU J M, YU G Y, DAI W, et al. Performance ofthe CHP system by using a 5 kW(e) class free pistonStirling generator [J]. Proceeding of the CSEE, 2018,38(11): 3275-3280 (in Chinese). |
[6] | YE Y Y, LAN J, L¨U T, et al. Numerical study onflameless oxy-diesel combustion in Stirling engine combustor[J]. Ship Science and Technology, 2016, 38(10):84-88 (in Chinese). |
[7] | KIM S Y, HUTH J, WOOD J G. Performance characterizationof sunpower free-piston Stirling engines[C]//3rd International Energy Conversion EngineeringConference. San Francisco, CA, USA: AIAA, 2005: 1-6. |
[8] | WONG W A, WILSON S, COLLINS J. AdvancedStirling convertor (ASC) development for NASA RPS[C]//3rd International Energy Conversion EngineeringConference. Cleveland, OH, USA: AIAA, 2013: 1-11. |
[9] | QIU S G, REDINGER D L, AUGENBLICK J E. Thenew generation infinia free-piston Stirling engine formicro-CHP and remote power applications [C]//3rdInternational Energy Conversion Engineering Conference.San Francisco, CA, USA: AIAA, 2005: 1-11. |
[10] | SCHREIBER J G. Summary of Stirling convertor testingat NASA Glenn Research Center [C]//4th InternationalEnergy Conversion Engineering Conference. SanDiego, CA, USA: AIAA, 2006: 1-14. |
[11] | LI T, TANG D W, LI Z G, et al. Development andtest of a Stirling engine driven by waste gases for themicro-CHP system [J]. Applied Thermal Engineering,2012, 33/34: 119-123. |
[12] | ARASHNIA I, NAJAFI G, GHOBADIAN B, et al.Development of micro-scale biomass-fuelled CHP systemusing Stirling engine [J]. Energy Procedia, 2015,75: 1108-1113. |
[13] | DAMIRCHI H, NAJAFI G, ALIZADEHNIA S, et al.Micro combined heat and power to provide heat andelectrical power using biomass and Gamma-type Stirlingengine [J]. Applied Thermal Engineering, 2016,103: 1460-1469. |
[14] | MURUGAN S, HORAK B. A review of micro combinedheat and power systems for residential applications[J]. Renewable & Sustainable Energy Reviews,2016, 64: 144-162. |
[15] | SHIH T H, LIOU W W, SHABBIR A, et al. A new k-εeddy viscosity model for high reynolds number turbulentflows [J]. Computers & Fluids, 1995, 24(3): 227-238. |
[16] | JIN X D, ZHOU Y G. Numerical analysis on microscopiccharacteristics of pulverized coal moderate andintense low-oxygen dilution combustion [J]. Energy &Fuels, 2015, 29(5): 3456-3466. |
[1] | WEN Xiaofei, ZHOU Ruiping, YUAN Qiang, LEI Junsong . Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 463-469. |
[2] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[3] | ZHAO Peipei (赵培培), WANG Lipo* (王利坡). Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence[J]. sa, 2018, 23(1): 190-201. |
[4] | XIAO Xiao (肖潇), ZHANG Yangqing (张扬清), LI Mingguang* (李明广), WANG Jianhua (王建华). Responses of the Strata and Supporting System to Dewatering in Deep Excavations[J]. 上海交通大学学报(英文版), 2017, 22(6): 705-711. |
[5] | ZHEN Lianga (甑亮), CHEN Jinjiana* (陈锦剑), . Effect of Orthogonal Stiffeners on the Stability of Axially Compressed Steel Jacking Pipe[J]. 上海交通大学学报(英文版), 2017, 22(5): 536-540. |
[6] | WANG Huaming1,3 (王化明), SHENG Xue1 (盛学), WANG Shilai2* (王世来), CHEN Lin2 (陈林),YUAN. Numerical Study on Water Depth Effects on Hydrodynamic Forces Acting on Berthing Ships[J]. 上海交通大学学报(英文版), 2017, 22(2): 198-205. |
[7] | 宋金龙,赵亦希,于忠奇,孔庆帅. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1304-1311. |
[8] | SUI Da-shan*(隋大山), GAO Liang (高 亮), CUI Zhen-shan (崔振山). Microstructure Evolution of Different Forging Processes for 12%Cr Steel During Hot Deformation[J]. 上海交通大学学报(英文版), 2015, 20(5): 606-611. |
[9] | NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊). Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone[J]. 上海交通大学学报(英文版), 2013, 18(6): 729-732. |
[10] | ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597. |
[11] | LI Ke1,2* (李 科), WANG Ying-yi3 (王颖轶), HUANG Xing-chun2,3 (黄醒春). Regression Analysis of Initial Stress Field Around Faults Based on Fault Throw by Displacement Discontinuity Method[J]. 上海交通大学学报(英文版), 2013, 18(4): 474-478. |
[12] | ZENG Zhuo-xiong (曾卓雄), CHEN Chao-jie (陈超杰). Fluctuation Velocity Correlation Closure Model for Dense Gas-Particle Turbulent Flow[J]. 上海交通大学学报(英文版), 2012, 17(4): 447-451. |
[13] | SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2. Simulation and Discussion on the Decreasing Flow Stress Scale Effect[J]. 上海交通大学学报(英文版), 2012, 17(3): 306-311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||