上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (6): 729-732.doi: 10.1007/s12204-013-1457-3
NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊)
出版日期:
2013-12-31
发布日期:
2013-12-18
通讯作者:
SUN Hong (孙 红)
E-mail:sunhong@sjtu.edu.cn
NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊)
Online:
2013-12-31
Published:
2013-12-18
Contact:
SUN Hong (孙 红)
E-mail:sunhong@sjtu.edu.cn
摘要: Based on the advantages of perforated ventilation characteristic of perforated ventilation pipe embankment and large porosity of blocky stone embankment, composite embankment with ventilation pipe and blocky stone is more efficient to protect the underlying permafrost. The temperature fields and cooling effect of composite embankment with air doors are simulated by examining the effects of holes’ position drilled in the pipe, diameter in pipe and density of holes. It is shown that the underlying permafrost temperature obviously reduces by composite methods, the location of 0?C isotherm raises significantly, especially permafrost temperature under the center and shoulder of embankment reduces more quickly, the composite embankment with holes drilled in the lower side of pipe is the most efficient, the increase of diameter has a slight influence on the 0?C isotherm’s raising, and the density of holes slightly influences the raising of 0?C isotherm.
中图分类号:
NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊). Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone[J]. 上海交通大学学报(英文版), 2013, 18(6): 729-732.
NIU Fu-jun1,3 (牛富俊), SUN Hong2* (孙 红), GE Xiu-run2 (葛修润), ZHANG Jin-zhao3 (章金钊). Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(6): 729-732.
[1] Zhao Qi-guo, Wang Hao-qing, Gu Guo-an. Gelisols of China [J]. Acta Pedologica Sinica, 1993, 30(4): 341-354 (in Chinese). [2] Ma Wei, Cheng Guo-dong, Wu Qing-bai. Preliminary study on technology of cooling foundation in permafrost regions [J]. Journal of Glaciol and Geocryology,2002, 24(5): 579-587 (in Chinese). [3] Cheng G D, Wu Q B, Ma W. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway[J]. Science in China Series E: Technological Sciences,2009, 52(2): 530-538. [4] Niu F J, Cheng G D, Xia H M, et al. Field experiment study on effects of duct ventilated railway embankment on protecting the underlying permafrost [J]. Cold Regions Science and Technology, 2006, 45(3):178-192. [5] Sun Z Z, Ma W, Li D Q. In situ test on cooling effectiveness of air convection embankment with crushed rock slope protection in permafrost regions [J]. Journal of Cold Regions Engineering, 2005, 19(2): 38-51. [6] Zhang M Y, Lai Y M, Dong Y H. Numerical study on temperature characteristics of expressway embankment with crushed-rock revetment and ventilated ducts in warm permafrost regions [J]. Cold Regions Science and Technology, 2009, 59(1): 19-24. [7] Lai Y M, Guo H X, Dong Y H. Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed-rock revetment in permafrost regions [J]. Cold Regions Science and Technology, 2009, 58(3): 143-150. [8] Jiang Wu-jun, Ge Xiu-run. Application of doubleenergy equation to porous media of ventilated embankment[J]. Chinese Journal Rock Mechanics and Engineering,2006, 25(6): 1170-1176 (in Chinese). [9] Liu Qi, Sun Bin-xiang, Yang Li-jun, et al. Cooling effect of embankments with perforated ventilation pipes [J]. Chinese Journal of Geotechnical Engineering,2008, 30(8): 1152-1157 (in Chinese). [10] Wu Qing-bai, Zhao Shi-yun, Ma Wei, et al. Monitoring and analysis of cooling effect of block-stone embankment for Qinghai-Tibet Railway [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12):1386-1390 (in Chinese). [11] Mu Yan-hu, Ma Wei, Sun Zhi-zhong, et al. Comparative analysis of cooling effect of crushed rock embankment along the Qinghai-Tibet Railway [J]. Chinese Rock and Soil Mechanics, 2010, 31(sup1): 284-292 (in Chinese). [12] Sun Hong, Niu Fu-jun, Chen Zhe, et al. Stochastic temperature field of frozen soil roadbed based on Monte-Carlo method [J]. Journal of Shanghai Jiaotong University, 2011, 45(5): 738-742 (in Chinese). |
[1] | WEN Xiaofei, ZHOU Ruiping, YUAN Qiang, LEI Junsong . Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 463-469. |
[2] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[3] | JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu. Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55. |
[4] | ZHAO Peipei (赵培培), WANG Lipo* (王利坡). Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence[J]. sa, 2018, 23(1): 190-201. |
[5] | XIAO Xiao (肖潇), ZHANG Yangqing (张扬清), LI Mingguang* (李明广), WANG Jianhua (王建华). Responses of the Strata and Supporting System to Dewatering in Deep Excavations[J]. 上海交通大学学报(英文版), 2017, 22(6): 705-711. |
[6] | ZHEN Lianga (甑亮), CHEN Jinjiana* (陈锦剑), . Effect of Orthogonal Stiffeners on the Stability of Axially Compressed Steel Jacking Pipe[J]. 上海交通大学学报(英文版), 2017, 22(5): 536-540. |
[7] | WANG Huaming1,3 (王化明), SHENG Xue1 (盛学), WANG Shilai2* (王世来), CHEN Lin2 (陈林),YUAN. Numerical Study on Water Depth Effects on Hydrodynamic Forces Acting on Berthing Ships[J]. 上海交通大学学报(英文版), 2017, 22(2): 198-205. |
[8] | 宋金龙,赵亦希,于忠奇,孔庆帅. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1304-1311. |
[9] | SUI Da-shan*(隋大山), GAO Liang (高 亮), CUI Zhen-shan (崔振山). Microstructure Evolution of Different Forging Processes for 12%Cr Steel During Hot Deformation[J]. 上海交通大学学报(英文版), 2015, 20(5): 606-611. |
[10] | ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597. |
[11] | LI Ke1,2* (李 科), WANG Ying-yi3 (王颖轶), HUANG Xing-chun2,3 (黄醒春). Regression Analysis of Initial Stress Field Around Faults Based on Fault Throw by Displacement Discontinuity Method[J]. 上海交通大学学报(英文版), 2013, 18(4): 474-478. |
[12] | ZENG Zhuo-xiong (曾卓雄), CHEN Chao-jie (陈超杰). Fluctuation Velocity Correlation Closure Model for Dense Gas-Particle Turbulent Flow[J]. 上海交通大学学报(英文版), 2012, 17(4): 447-451. |
[13] | SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2. Simulation and Discussion on the Decreasing Flow Stress Scale Effect[J]. 上海交通大学学报(英文版), 2012, 17(3): 306-311. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 640
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||