Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (3): 342-353.doi: 10.16183/j.cnki.jsjtu.2023.299
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LIU Changxi1, QI Guomin1, WANG Jicheng1, LI Tianye1, YANG Jian2, LEI Xia2()
Received:
2023-07-06
Revised:
2023-08-20
Accepted:
2023-08-28
Online:
2025-03-28
Published:
2025-04-02
CLC Number:
LIU Changxi, QI Guomin, WANG Jicheng, LI Tianye, YANG Jian, LEI Xia. Design of Two-Stage Electricity Spot Market Model Considering Carbon Emission Trading[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 342-353.
Tab.1
Cost parameters of thermal power units and wind power quotation
机组编号 | 机组类型 | 火电燃料成本系数 | 最小启停 时间/h | 风电成本/ [元·(MW·h)-1] | ||
---|---|---|---|---|---|---|
ag/(元·MW-2) | bg/(元·MW-1) | cg/元 | ||||
G1 | 火电 | 1.17 | 206.21 | 5638.83 | 8 | |
G2 | 火电 | 0.81 | 260.81 | 6777.16 | 4 | |
G3 | 火电 | 0.22 | 219.51 | 7525.12 | 2 | |
G4 | 火电 | 0.14 | 204.28 | 9772.91 | 3 | |
G5 | 火电 | 1.17 | 206.21 | 5638.83 | 1 | |
W1 | 风电 | 0 | 140 | |||
W2 | 风电 | 0 | 145 | |||
W3 | 风电 | 0 | 150 |
Tab.2
Operating parameters and declared data of units
机组 编号 | 机组 类型 | 出力 上限/MW | 出力 下限/MW | 爬坡率/ (MW·h-1) | 碳排放强度/ [t·(MW·h)-1] | 申报碳 额度/t | 购买 碳排量/t | 购买价格/ (元·t-1) | 出售 碳排量/t | 出售价格/ (元·t-1) |
---|---|---|---|---|---|---|---|---|---|---|
G1 | 火电 | 160 | 50 | 37.5 | 0.88 | 1000 | 400 | 55 | ||
G2 | 火电 | 100 | 25 | 30.0 | 0.84 | 1000 | 300 | 52 | ||
G3 | 火电 | 60 | 15 | 15.0 | 0.85 | 500 | 100 | 53 | ||
G4 | 火电 | 40 | 10 | 15.0 | 0.82 | 400 | 50 | 54 | ||
G5 | 火电 | 40 | 10 | 15.0 | 0.80 | 600 | 100 | 53 | ||
W1 | 风电 | 100 | 0 | 100.0 | 0.00 | 0 | ||||
W2 | 风电 | 80 | 0 | 80.0 | 0.00 | 0 | ||||
W3 | 风电 | 50 | 0 | 50.0 | 0.00 | 0 |
Tab.3
Results of carbon quota allocation based on ZSG-DEA
火电机组 | 初始碳配额 | 第1次迭代 | 第2次迭代 | 第3次迭代 | |||||
---|---|---|---|---|---|---|---|---|---|
碳配额×10-4/t | 效率值 | 效率值 | 效率值 | 碳配额×10-4/t | 效率值 | ||||
G1 | 80.45 | 0.8809 | 0.9234 | 0.9856 | 75.58 | 1.0000 | |||
G2 | 30.10 | 1.0000 | 1.0000 | 1.0000 | 33.34 | 1.0000 | |||
G3 | 16.55 | 0.9234 | 0.9811 | 1.0000 | 18.14 | 1.0000 | |||
G4 | 15.57 | 0.9132 | 0.9356 | 0.9516 | 13.26 | 0.9837 | |||
G5 | 15.33 | 0.9305 | 0.9528 | 0.9831 | 17.68 | 1.0000 |
[1] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
[2] |
王利兵, 张赟. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 2021, 42(9): 1-9.
doi: 10.12204/j.issn.1000-7229.2021.09.001 |
WANG Libing, ZHANG Yun. Factors decomposition and scenario prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 2021, 42(9): 1-9.
doi: 10.12204/j.issn.1000-7229.2021.09.001 |
|
[3] | WANG P, LI M. Scenario analysis in the electric power industry under the implementation of the electricity market reform and a carbon policy in China[J]. Energies, 2019, 12(11): 2152. |
[4] |
张菁, 林毓军, 齐晓光, 等. 考虑碳税与碳交易替代效应的电力系统低碳经济调度方法[J]. 电力建设, 2022, 43(6): 1-11.
doi: 10.12204/j.issn.1000-7229.2022.06.001 |
ZHANG Jing, LIN Yujun, QI Xiaoguang, et al. Low-carbon economic dispatching method for power system considering the substitution effect of carbon tax and carbon trading[J]. Electric Power Construction, 2022, 43(6): 1-11.
doi: 10.12204/j.issn.1000-7229.2022.06.001 |
|
[5] | 潘崇超, 侯孝旺, 金泰, 等. 计及阶梯碳交易和可再生能源不确定性的综合能源系统低碳研究[J]. 电测与仪表, 2024, 61(10): 8-16. |
PAN Chongchao, HOU Xiaowang, JIN Tai, et al. Low carbon research on integrated energy system considering the tiered carbon trading and the uncertainties of renewable energy[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 8-16. | |
[6] | 李国庆, 王冲, 雷顺波, 等. 考虑碳捕集技术的电力系统双层优化配置[J]. 电力自动化设备, 2023, 43(1): 25-31. |
LI Guoqing, WANG Chong, LEI Shunbo, et al. Bi-level optimal allocation of power system considering carbon capture technology[J]. Electric Power Automation Equipment, 2023, 43(1): 25-31. | |
[7] |
王文彬, 郑蜀江, 范瑞祥, 等. “双碳” 背景下微网分布式电能交易绩效评价指标与方法[J]. 上海交通大学学报, 2022, 56(3): 312-324.
doi: 10.16183/j.cnki.jsjtu.2021.391 |
WANG Wenbin, ZHENG Shujiang, FAN Ruixiang, et al. Performance evaluation index and method of micro-grid distributed electricity trading under the background of “carbon peaking and carbon neutrality”[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 312-324. | |
[8] |
刘明涛, 谢俊, 张秋艳, 等. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607.
doi: 10.16183/j.cnki.jsjtu.2021.295 |
LIU Mingtao, XIE Jun, ZHANG Qiuyan, et al. Short-term production simulation of power system containing wind power under carbon trading environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. | |
[9] |
彭思佳, 邢海军, 成明洋. 多重不确定环境下考虑阶梯型碳交易的虚拟电厂低碳经济调度[J]. 上海交通大学学报, 2023, 57(12): 1571-1582.
doi: 10.16183/j.cnki.jsjtu.2022.185 |
PENG Sijia, XING Haijun, CHENG Mingyang. Low carbon economic dispatch of virtual power plants considering ladder-type carbon trading in multiple uncertainties[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1571-1582. | |
[10] |
刘铠诚, 孙嘉赣, 周任军, 等. 碳市场下火电统一碳排放基准与减排效应分析[J]. 电力建设, 2018, 39(1): 113-118.
doi: 10.3969/j.issn.1000-7229.2018.01.015 |
LIU Kaicheng, SUN Jiagan, ZHOU Renjun, et al. A unified carbon emission benchmark for fossil-fueled units and its effect on carbon emission reduction in carbon market[J]. Electric Power Construction, 2018, 39(1): 113-118.
doi: 10.3969/j.issn.1000-7229.2018.01.015 |
|
[11] | EBERLE A L, HEATH G A. Estimating carbon dioxide emissions from electricity generation in the United States: How sectoral allocation may shift as the grid modernizes[J]. Energy Policy, 2020, 140: 111324. |
[12] | 潘险险, 余梦泽, 隋宇, 等. 计及多关联因素的电力行业碳排放权分配方案[J]. 电力系统自动化, 2020, 44(1): 35-42. |
PAN Xianxian, YU Mengze, SUI Yu, et al. Allocation scheme of carbon emission rights for power industry considering multiple correlated factors[J]. Automation of Electric Power Systems, 2020, 44(1): 35-42. | |
[13] | YU A Y, YOU J X, RUDKIN S, et al. Industrial carbon abatement allocations and regional collaboration: re-evaluating China through a modified data envelopment analysis[J]. Applied Energy, 2019, 233: 232-243. |
[14] | 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154. |
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154. | |
[15] | 董宏伟, 秦光宇, 王玲湘, 等. 新电改下可再生能源衍生品交易研究[J]. 价格理论与实践, 2019(3): 93-96. |
DONG Hongwei, QIN Guangyu, WANG Lingxiang, et al. Research on trading of renewable energy derivatives market under the new electricity reform[J]. Price: Theory & Practice, 2019(3): 93-96. | |
[16] | 赵麟, 李亚鹏, 靳晓雨, 等. 考虑CCER机制的碳-电耦合市场水火电协同竞价模型[J]. 电力系统自动化, 2023, 47(21): 12-24. |
ZHAO Lin, LI Yapeng, JIN Xiaoyu, et al. Coordinated bidding model of hydro-thermal power in carbon-electricity coupled market considering Chinese certified emission reduction mechanism[J]. Automation of Electric Power Systems, 2023, 47(21): 12-24. | |
[17] | 张宁, 庞军, 冯相昭. 全国碳市场引入配额拍卖机制的经济影响: 基于CGE模型的分析[J]. 中国环境科学, 2022, 42(4): 1901-1911. |
ZHANG Ning, PANG Jun, FENG Xiangzhao. The economic impacts of introducing auction into carbon allowance allocation mechanism in the national carbon market: Simulation based on CGE model[J]. China Environmental Science, 2022, 42(4): 1901-1911. | |
[18] | 赵长红, 张明明, 吴建军, 等. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11(4): 105-112. |
ZHAO Changhong, ZHANG Mingming, WU Jianjun, et al. The coupling study on carbon market and power market[J]. Chinese Journal of Environmental Management, 2019, 11(4): 105-112. | |
[19] |
帅云峰, 周春蕾, 李梦, 等. 美国碳市场与电力市场耦合机制研究: 以区域温室气体减排行动(RGGI)为例[J]. 电力建设, 2018, 39(7): 41-47.
doi: 10.3969/j.issn.1000-7229.2018.07.005 |
SHUAI Yunfeng, ZHOU Chunlei, LI Meng, et al. Coupling mechanism of U.S. carbon market and electricity market: A case study of regional greenhouse gas initiative[J]. Electric Power Construction, 2018, 39(7): 41-47.
doi: 10.3969/j.issn.1000-7229.2018.07.005 |
|
[20] | 张宁, 庞军. 全国碳市场引入CCER交易及抵销机制的经济影响研究[J]. 气候变化研究进展, 2022, 18(5): 622-636. |
ZHANG Ning, PANG Jun. The economic impacts of introducing CCER trading and offset mechanism into the national carbon market of China[J]. Climate Change Research, 2022, 18(5): 622-636. | |
[21] | 孙晓聪, 丁一, 包铭磊, 等. 考虑发电商多时间耦合决策的碳-电市场均衡分析[J]. 电力系统自动化, 2023, 47(21): 1-11. |
SUN Xiaocong, DING Yi, BAO Minglei, et al. Carbon-electricity market equilibrium analysis considering multi-time coupling decision of power producers[J]. Automation of Electric Power Systems, 2023, 47(21): 1-11. | |
[22] | 杨威, 龚学良, 曾智健, 等. 碳排放交易市场机制对电力市场的影响:基于碳价需求响应的电力市场用户行为分析[J]. 南方电网技术, 2022, 16(8): 59-67. |
YANG Wei, GONG Xueliang, ZENG Zhijian, et al. Impacts of ETS mechanism on electricity market: Behavior analysis of market customers based on carbon-oriented demand response[J]. Southern Power System Technology, 2022, 16(8): 59-67. | |
[23] |
朱月尧, 祁佟, 吴星辰, 等. 计及实时碳减排的产消群价格型需求响应机制[J]. 上海交通大学学报, 2023, 57(4): 452-463.
doi: 10.16183/j.cnki.jsjtu.2022.062 |
ZHU Yueyao, QI Tong, WU Xingchen, et al. Price-based demand response mechanism of prosumer groups considering real-time carbon emission reduction[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 452-463. | |
[24] | 胡东滨, 彭丽娜, 陈晓红. 配额分配方式对不同区域碳交易市场运行效率影响研究[J]. 科技管理研究, 2018, 38(19): 240-246. |
HU Dongbin, PENG Lina, CHEN Xiaohong. Study on effect to operational efficiency of carbon trading market in different regions by quota allocation mode[J]. Science & Technology Management Research, 2018, 38(19): 240-246. | |
[25] | 冯青, 吴志彬, 徐玖平. 基于投入产出规模的省际碳排放配额分配研究[J]. 中国管理科学, 2023, 31(3): 268-276. |
FENG Qing, WU Zhibin, XU Jiuping. Research on inter-provincial carbon emission allowance allocation based on input-output scale[J]. Chinese Journal of Management Science, 2023, 31(3): 268-276. | |
[26] | 王心昊, 蒋艺璇, 陈启鑫, 等. 可交易减排价值权证比较分析和衔接机制研究[J]. 电网技术, 2023, 47(2): 594-603. |
WANG Xinhao, JIANG Yixuan, CHEN Qixin, et al. On tradeable certificates of emissions reduction and their interactions[J]. Power System Technology, 2023, 47(2): 594-603. | |
[27] | 马燕峰, 杨小款, 赵书强, 等. 基于潮流转移和追踪的含风电电力系统运行风险评估[J]. 电力自动化设备, 2021, 41(1): 77-85. |
MA Yanfeng, YANG Xiaokuan, ZHAO Shuqiang, et al. Assessment of operation risk for power system containing wind power based on power flow transferring and tracing[J]. Electric Power Automation Equipment, 2021, 41(1): 77-85. |
[1] | LOU Wei, HU Rong, YU Jinming, ZHANG Xipeng, FAN Feilong, LIU Songyuan. Multi-Agent Coordinated Dispatch of Power Grid and Pumped Hydro Storage with Embedded Market Game Model [J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 365-375. |
[2] | LIANG Yiheng, YANG Dongmei, LIU Gang, YE Wenjie, YANG Yize, QIAN Tao, HU Qinran. A Strategy for Smoothing Power Fluctuations of New Energy Based on Improved Power Prediction Accuracy and Market Transaction [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 221-229. |
[3] | YIN Gaowen, SHEN Feifan, HUANG Sheng, WEI Juan, QU Yinpeng, WANG Pengda. Dispatching Method of Combined Wind-Storage System for Multi-Time Scale Scenarios Application in Electricity Markets [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1410-1419. |
[4] | FAN Hong, XING Mengqing, WANG Lankun, TIAN Shuxin. Multi-Time Scale Probabilistic Production Simulation of Wind-Solar Hydrogen Integrated Energy System Considering Hydrogen Storage [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 881-892. |
[5] | ZHAN Bochun, FENG Changsen, WANG Xiaohui, ZHANG Heng, MA Junwei, WEN Fushuan. A P2P Electricity-Carbon Trading Mechanism for Distributed Prosumers Based on Carbon Emission Flow Model [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1846-1856. |
[6] | GU Huijie, ZHOU Huafeng, PENG Chaoyi, HU Yaping, ZHAO Xinyi, XIE Jun, SHI Xionghua. A Multi-Time Scale Scheduling Model for Power Generation Systems with a High Proportion of New Energy Including Pumped Storage Power Stations [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1957-1967. |
[7] | ZHANG Xianwen, YIN Gaowen, SHEN Feifan, HUANG Sheng, WEI Juan. Bidding Strategies for Energy Storage Participation in Electricity Market Considering Uncertainty of Wind Power and Carbon Trading [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1868-1880. |
[8] | SHEN Qi, LI Ouping, LIU Chao, CHENG Guangyuan, YU Xichong. Adaptability Analysis of Offshore New Energy Storage Technology Under Dual-carbon Background [J]. Ocean Engineering Equipment and Technology, 2024, 11(1): 106-115. |
[9] | CHEN Yi, WANG Han, XU Xiaoyuan, HU Youlin, YAN Zheng, ZENG Dan, FENG Kai. A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1114-1125. |
[10] | LIU Fei, CHE Yanying, TIAN Xu, XU Decao, ZHOU Huijie, LI Zhiyi. Cost Sharing Mechanisms of Pumped Storage Stations in the New-Type Power System: Review and Prospect [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 757-768. |
[11] | LI Qian, JIANG Xin, ZHANG Junzhao, DUAN Shijie, JIN Yang. Business Models for Large-Scale Energy Storage Systems to Participate in Electricity Spot Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1543-1558. |
[12] | LI Jiaqi, XU Xiaoyuan, Yan Zheng. A Review of Coupled Electricity and Hydrogen Energy System with Transportation System Under the Background of Large-Scale New Energy Vehicles Access [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266. |
[13] | HU Chunyang, WU Xin, ZHOU Feng. Green Certificate Transaction of Electric Vehicle Based on Blockchain Technology [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 64-71. |
[14] | WEI Lishen, FENG Yuang, FANG Jiakun, AI Xiaomeng, WEN Jinyu. Impact of Renewable Energy Integration on Market-Clearing Results in Spot Market Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1631-1639. |
[15] | Lei ZHANG, Qinghua LIU, Xiaobo DUAN, Shuhe LU, Xiaohu HUA. Design of a Comprehensive Experiment for Preparation and Characterization Evaluation of in situ formed Ag Catalyst [J]. Research and Exploration in Laboratory, 2017, 36(5): 64-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||