[1] |
习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 中华人民共和国国务院公报, 2020(35): 7.
|
|
XI Jinping. Building on past achievements and launching a new journey for global climate actions—Statement at the climate ambition summit[N]. Gazette of the State Council of the People’s Republic of China, 2020(35): 7.
|
[2] |
张扬科, 李刚, 李秀峰. 基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J]. 电力自动化设备, 2021, 41(11): 205-210.
|
|
ZHANG Yangke, LI Gang, LI Xiufeng. Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric Power Automation Equipment, 2021, 41(11): 205-210.
|
[3] |
葛乐, 陆文伟, 袁晓冬, 等. 基于改进相似日和ABC-SVM的光伏电站功率预测[J]. 太阳能学报, 2018, 39(3): 775-782.
|
|
GE Le, LU Wenwei, YUAN Xiaodong, et al. Power forecasting of photovoltaic plant based on improved similar day and ABC-SVM[J]. Acta Energiae Solaris Sinica, 2018, 39(3): 775-782.
|
[4] |
马国锋. 基于机器学习的风电短期功率预测的研究与实现[D]. 呼和浩特: 内蒙古农业大学, 2021.
|
|
MA Guofeng. Research and implementation of short-term wind power prediction based on machine learning[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
|
[5] |
刘颖明, 王维, 王晓东, 等. 结合风功率预测及储能能量状态的模糊控制策略平滑风电出力[J]. 电网技术, 2019, 43(7): 2535-2543.
|
|
LIU Yingming, WANG Wei, WANG Xiaodong, et al. A fuzzy control strategy combined with wind power prediction and energy storage SOE for smoothing wind power output[J]. Power System Technology, 2019, 43(7): 2535-2543.
|
[6] |
李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
|
|
LI Dazhong, LI Yingyu. Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 200-205.
|
[7] |
柳杰, 苗宗成, 王清云. 数据驱动的锂离子电池全生命周期状态参数评估[J]. 科学通报, 2023, 68(6): 644-655.
|
|
LIU Jie, MIAO Zongcheng, WANG Qingyun. Data-driven full life-cycle state parameter assessment of Li-ion batteries[J]. Chinese Science Bulletin, 2023, 68(6): 644-655.
|
[8] |
MUHAMMAD EHSAN R, SIMON S P, VENKATESWARAN P R. Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron[J]. Neural Computing & Applications, 2017, 28(12): 3981-3992.
|
[9] |
张惠娟, 刘琪, 岑泽尧, 等. 基于GWO-MLP的光伏系统输出功率短期预测模型[J]. 电测与仪表, 2022, 59(7): 72-77.
|
|
ZHANG Huijuan, LIU Qi, CEN Zeyao, et al. Short-term prediction model of output power of photovoltaic system based on GWO-MLP[J]. Electrical Measurement & Instrumentation, 2022, 59(7): 72-77.
|
[10] |
雷珽, 欧阳曾恺, 李征, 等. 平抑风能波动的储能电池SOC与滤波协调控制策略[J]. 电力自动化设备, 2015, 35(7): 126-131.
|
|
LEI Ting, OUYANG Zengkai, LI Zheng, et al. Coordinated control of battery SOC maintaining and filtering for wind power fluctuation smoothing[J]. Electric Power Automation Equipment, 2015, 35(7): 126-131.
|
[11] |
夏清, 杨知方, 赖晓文, 等. 基于分时容量电价的新型电力现货市场设计[J]. 电网技术, 2022, 46(5): 1771-1779.
|
|
XIA Qing, YANG Zhifang, LAI Xiaowen, et al. Electricity market design based on temporal pricing of renewable capacity[J]. Power System Technology, 2022, 46(5): 1771-1779.
|
[12] |
FANG X, HU Q R, LI F X, et al. Coupon-based demand response considering wind power uncertainty: A strategic bidding model for load serving entities[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1025-1037.
|
[13] |
刘传斌, 矫文书, 吴秋伟, 等. 基于模型预测控制的风储联合电场参与电网二次调频策略[J]. 上海交通大学学报, 2024, 58(1): 91-101.
doi: 10.16183/j.cnki.jsjtu.2022.217
|
|
LIU Chuanbin, JIAO Wenshu, WU Qiuwei, et al. Strategy of wind-storage combined system participating in power system secondary frequency regulation based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 91-101.
|
[14] |
杨波, 汤文成, 吴福保, 等. 考虑CVaR的“新能源+储能” 电厂日前市场投标策略[J]. 电力系统保护与控制, 2022, 50(9): 93-100.
|
|
YANG Bo, TANG Wencheng, WU Fubao, et al. Day-ahead market bidding strategy for “renewable energy + energy storage” power plants considering conditional value-at-risk[J]. Power System Protection & Control, 2022, 50(9): 93-100.
|
[15] |
马静, 沈玉明, 荣秀婷, 等. 考虑储能用户与新能源双边交易调峰服务的电力系统联合运营模式[J]. 电力自动化设备, 2023, 43(1): 113-120.
|
|
MA Jing, SHEN Yuming, RONG Xiuting, et al. Joint operation mode of power system considering bilateral peak regulation service transaction between energy storage users and new energy[J]. Electric Power Automation Equipment, 2023, 43(1): 113-120.
|
[16] |
胡珊珊, 张乐平, 王吉. 基于多层感知机的多维条件下电能表准确度预测模型[J]. 电测与仪表, 2018, 55(16): 125-131.
|
|
HU Shanshan, ZHANG Leping, WANG Ji. Power meter accuracy forecast model based on multidimensional conditions by multi-layer perceptions[J]. Electrical Measurement & Instrumentation, 2018, 55(16): 125-131.
|
[17] |
刘星斗. 基于WRF与深度神经网络的风电功率预测[D]. 济南: 山东大学, 2022.
|
|
LIU Xingdou. Wind power prediction based on wrf and deep neural network[D]. Jinan: Shandong University, 2022.
|
[18] |
TANG X L, LIU N C, WAN Y L, et al. Multi-step model predictive control based on online support vector regression optimized by multi-agent particle swarm optimization algorithm[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 607-612.
doi: 10.1007/s12204-018-1990-1
|
[19] |
杨建华, 张步涵, 李俊芳. 华中电力市场MCP与PAB竞价结算模式研究[J]. 水电能源科学, 2009, 27(6): 219-222.
|
|
YANG Jianhua, ZHANG Buhan, LI Junfang. Research on bidding and clearing of PAB and MCP in power market of central China grid[J]. Water Resources & Power, 2009, 27(6): 219-222.
|