Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (7): 757-768.doi: 10.16183/j.cnki.jsjtu.2021.516
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Next Articles
LIU Fei1, CHE Yanying1, TIAN Xu1, XU Decao2, ZHOU Huijie3,4, LI Zhiyi4()
Received:
2021-12-16
Revised:
2022-05-17
Accepted:
2022-07-30
Online:
2023-07-28
Published:
2023-07-28
Contact:
LI Zhiyi
E-mail:zhiyi@zju.edu.cn
CLC Number:
LIU Fei, CHE Yanying, TIAN Xu, XU Decao, ZHOU Huijie, LI Zhiyi. Cost Sharing Mechanisms of Pumped Storage Stations in the New-Type Power System: Review and Prospect[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 757-768.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.516
Tab.2
Functional orientation and cost effectiveness of PSS
功能定位 | 技术特点 | 固有优势 | 对应成本 | 产生效益 |
---|---|---|---|---|
调峰 | 既可以作为电源进行发电,也可以作为负荷吸收新能源的过剩出力,灵活地调节峰谷差 | 启停技术成本低;抽发灵活 | 电量成本 | 吸收新能源的过剩出力 |
调频 | 及时跟踪负荷变化,保持电力系统的频率稳定 | 调节速度快;负荷跟踪能力强 | 容量成本 | 减少了火电机组燃煤的消耗 |
调压 | 通过调相运行发出或者吸收无功功率,调整系统的电压处于安全的范围 | 持续时间长;进相深 | 容量成本 | 减少电网无功补偿设备的投入 |
事故备用 | 在其他机组发生故障时,通过快速投入,防止电网断电造成事故的恶化 | 调节容量大,投入快速 | 容量成本 | 保障正常用电 |
黑启动 | 电力系统全部停电时,通过自启动带动其他机组逐渐恢复运行 | 启动迅速方便,耗费能量小;负荷增长速度快 | 容量成本 | 减少停电时间和停电带来的损失 |
Tab.3
Pricing mechanism and advantage and disadvantage analysis of PSS
价格形成机制 | 核算方式 | 优势 | 劣势 | 适用场景 | 应用国家 |
---|---|---|---|---|---|
不核算价格 | “成本+收益”的方式,直接内部进行结算,不单独进行核算 | 效益与电网捆绑;收入稳定 | 难以反映电站的价格信号和实际价值 | 租赁制或电网独资 | 日本、法国、中国 |
两部制电价 | 电量电价弥补抽水发电的损失;容量电价体现辅助服务效益,由政府核定 | 电量和容量价值分别体现,保障抽蓄电站的基本收益 | 缺少市场化竞价,抽蓄电站的收益低 | 电力市场不成熟 | 中国 |
固定收入+ 变动竞价 | 年度固定收入基于对辅助服务和提供电量平衡服务的两部分补偿,变动竞价收入由电力平衡市场交易获得 | 充分发挥抽蓄电站的灵活调节能力和容量价值,提高了电站参与市场的积极性 | 需要较为完善的市场条件和市场激励机制 | 电力市场基本健全 | 英国 |
完全市场化 | 价格完全由市场竞争决定 | 以价格信号反映价值,有效分摊成本,免于核算 | 电站的收益没有保障,波动风险性较大,对电力市场环境的要求高 | 电力市场发展成熟 | 英国、美国、德国、瑞士 |
[19] | National Energy Administration. Medium and long term development plan of pumped storage (2021-2035)) [EB/OL]. (2021-09-09)[2021-12-16]. http://www.gov.cn/xinwen/2021-09/09/content_5636487.htm. |
[20] | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29. |
WEN Jun, LIU Nan, PEI Jie, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29. | |
[21] | 傅旭, 李富春, 杨欣, 等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源, 2020, 5(3): 34-38. |
FU Xu, LI Fuchun, YANG Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 34-38. | |
[22] | 段敬东. 新价格形成机制下抽水蓄能电站投资建设盈利能力研究[J]. 水电与抽水蓄能, 2021, 7(6): 69-73. |
DUAN Jingdong. Research on the profitability of pumped storage power station investment construction under new price mechanism[J]. Hydropower and Pumped Storage, 2021, 7(6): 69-73. | |
[23] | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Yingyuan, CHEN Yongchong, LIU Yong, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
[24] | 刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. |
LIU Jian. The economic assessment for energy storage technologies adaptive to variable renewable energy[J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. | |
[25] | 李泓泽. 电力系统多元主体间外部性影响机理及补偿机制研究[D]. 保定: 华北电力大学, 2013. |
LI Hongze. Research on external impact and compensation mechanism among the multiple components of electric power system[D]. Baoding: North China Electric Power University, 2013. | |
[26] | 王睿, 罗开颜, 张会娟, 等. 国外典型电力市场抽水蓄能电价机制及启示[J]. 中国电力企业管理, 2021(13): 74-75. |
WANG Rui, LUO Kaiyan, ZHANG Huijuan, et al. Pumped-storage electricity price mechanism and enlightenment in typical foreign power markets[J]. China Power Enterprise Management, 2021(13): 74-75. | |
[27] | 王科, 李泽文, 别朝红, 等. 抽水蓄能电站的电价机制及市场竞价模式研究[J]. 智慧电力, 2019, 47(6): 47-55. |
[1] | 陈政, 杨甲甲, 金小明, 等. 可再生能源发电电价形成机制与参与电力市场的竞价策略[J]. 华北电力大学学报(自然科学版), 2014, 41(2): 89-98. |
CHEN Zheng, YANG Jiajia, JIN Xiaoming, et al. A literature survey for pricing mechanisms and bidding strategies of renewable energy generation[J]. Journal of North China Electric Power University (Natural Science), 2014, 41(2): 89-98. | |
[2] | 刘梦晨, 郑华, 秦立军, 等. 基于源网荷储综合调峰资源协同方案研究[J]. 电测与仪表, 2022, 59(8): 127-132. |
LIU Mengchen, ZHENG Hua, QIN Lijun, et al. Research on the collaborative scheme of integrated peak shaving resources based on generation-grid-load-storage[J]. Electrical Measurement & Instrumentation, 2022, 59(8): 127-132. | |
[3] | 吴倩红, 韩蓓, 冯琳, 等. “人工智能+”时代下的智能电网预测分析[J]. 上海交通大学报, 2018, 52(10): 1206-1219. |
WU Qianhong, HAN Bei, FENG Lin, et al. “AI+” based smart grid prediction analysis[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1206-1219. | |
[4] | 李珂, 邰能灵, 张沈习. 基于改进粒子群算法的配电网综合运行优化[J]. 上海交通大学学报, 2017, 51(8): 897-902. |
LI Ke, TAI Nengling, ZHANG Shenxi. Comprehensive optimal dispatch of distribution network based on improved particle swarm optimization algorithm[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 897-902. | |
[5] |
BRUNINX K, DVORKIN Y, DELARUE E, et al. Coupling pumped hydro energy storage with unit commitment[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 786-796.
doi: 10.1109/TSTE.2015.2498555 URL |
[6] | 金骆松, 刘卫东, 纪德良. 电力市场背景下抽水蓄能电站交易机制设计[J]. 科学技术与工程, 2021, 21(27): 11632-11641. |
JIN Luosong, LIU Weidong, JI Deliang. Design of trading mechanism for pumped storage power stations under the background of power market[J]. Science Technology and Engineering, 2021, 21(27): 11632-11641. | |
[7] | 高志民. 抽水蓄能迎来快速发展机遇期[N]. 人民政协报, 2021-09-23(6). |
GAO Zhimin. Pumped storage ushered in a period of rapid development opportunities[N]. Journal of People's Political Consultative Conference, 2021-09-23(6). | |
[8] | 中华人民共和国国家发展和改革委员会. 关于进一步完善抽水蓄能价格形成机制的意见[EB/OL]. (2021-04-30)[2021-12-16]. http://www.gov.cn/zhengce/zhengceku/2021-05/08/content_5605367.htm. |
National Development and Reform Commission. Opinions on further improving pumped storage price formation mechanism[EB/OL]. (2021-04-30)[2021-12-16]. http://www.gov.cn/zhengce/zhengceku/2021-05/08/content_5605367.htm. | |
[9] | 柳洋, 何永秀, 李谟兴, 等. 市场环境下抽水蓄能电站的价格市场衔接机制设计与效益评估[DB/OL]. (2021-09-06)[2021-12-16]. https://kns.cnki.net/kcms/detail/11.3818.TM.20220129.2211.001.html. |
LIU Yang, HE Yongxiu, LI Moxing, et al. Design of price market linkage mechanism and economic benefit evaluation of pumped storage power station under the power market environment[DB/OL]. (2021-09-06)[2021-12-16]. https://kns.cnki.net/kcms/detail/11.3818.TM.20220129.2211.001.html. | |
[10] | 杨宏基, 周明, 张茗洋, 等. 电力市场下抽水蓄能电站运营策略及效益分析[J]. 华北电力大学学报(自然科学版). 2021, 48(6): 71-80. |
YANG Hongji, ZHOU Ming, ZHANG Mingyang, et al. Operational mechanism and cost-benefit analysis of pumped storage plant in power market environment[J]. Journal of North China Electric Power University (Natural Science), 2021, 48(6): 71-80. | |
[11] | 张柏林, 崔剑, 吴国栋. 基于抽水蓄能多重价值的储能市场盈利模式分析[J]. 中国水能及电气化. 2022(1): 49-54. |
ZHANG Bolin, CUI Jian, WU Guodong. Profit model analysis of energy storage market based on pumped storage multiple values[J]. China Water Power & Electrification, 2022(1): 49-54. | |
[12] | 韩民晓, 畅欣, 李继清, 等. 上池下库循环, 绿水青山常在--抽水蓄能技术应用与发展[J]. 科技导报, 2016, 34(23): 57-67. |
HAN Minxiao, CHANG Xin, LI Jiqing, et al. The upper pool and the lower reservoir circulate, the green water and mountains are always there-Application and development of pumped storage technology[J]. Science & Technology Review, 2016, 34(23): 57-67. | |
[13] |
陈超, 刘海滨, 葛景, 等. 双馈变速抽蓄机组参与平抑风电功率波动研究[J]. 发电技术, 2020, 41(4): 452-460.
doi: 10.12096/j.2096-4528.pgt.19099 |
CHEN Chao, LIU Haibin, GE Jing, et al. Wind power fluctuation suppression by doubly-fed variable-speed pumped storage unit[J]. Power Generation Technology, 2020, 41(4): 452-460.
doi: 10.12096/j.2096-4528.pgt.19099 |
|
[14] | 程路, 白建华. 新时期中国抽水蓄能电站发展定位及前景展望[J]. 中国电力, 2013, 46(11): 155-159. |
CHENG Lu, BAI Jianhua. Role and prospect of pumped storage power stations in China[J]. Electric Power, 2013, 46(11): 155-159. | |
[15] | 陈永翀, 冯彩梅, 刘勇. 双碳背景下中国储新比的发展趋势[J]. 能源, 2021(8): 41-45. |
CHEN Yongchong, FENG Caimei, LIU Yong. The development trend of stored energy and new energy ratio under the dual-carbon background in China[J]. Energy, 2021(8): 41-45. | |
[16] | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18. |
LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18. | |
[17] | 林铭山. 抽水蓄能发展与技术应用综述[J]. 水电与抽水蓄能, 2018, 4(1): 1-4. |
LIN Mingshan. Survey on development and technology application of pumped storage[J]. Hydropower and Pumped Storage, 2018, 4(1): 1-4. | |
[18] | 徐晓坤. 风光储互补系统并网优化调度研究[D]. 郑州: 华北水利水电大学, 2019. |
XU Xiaokun. Research on grid-connected optimization dispatch of wind-PV-storage complementary system[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. | |
[19] | 国家能源局. 抽水蓄能中长期发展规划(2021-2035年))[EB/OL]. (2021-09-09)[2021-12-16]. http://www.gov.cn/xinwen/2021-09/09/content_5636487.htm. |
[27] | WANG Ke, LI Zewen, BIE Chaohong, et al. Price mechanism of pumped storage hydro plants and its participation model in power market[J]. Smart Power, 2019, 47(6): 47-55. |
[1] | CHEN Yi, WANG Han, XU Xiaoyuan, HU Youlin, YAN Zheng, ZENG Dan, FENG Kai. A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1114-1125. |
[2] | HUANG Hai-Lun-1, YAN Zheng-2, YANG Yun-Yi-1, WEN Rui-1, YANG Pei-Juan-1. Optimal Strategy for Distribution Companies to Purchase and Sell Electricity and Manage Risk Considering Consumers’ Price Elasticity of Demand [J]. Journal of Shanghai Jiaotong University, 2012, 46(07): 1122-1126. |
[3] | YANG Jianlin1,YAN Zheng1,YU Guoqin2,LIN Yi2. Equilibrium Model for Electricity Market Including Energy Saving and Emission Reduction Constraints [J]. Journal of Shanghai Jiaotong University, 2010, 44(07): 984-0988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||