Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (7): 769-780.doi: 10.16183/j.cnki.jsjtu.2022.052
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
Received:
2022-03-05
Revised:
2022-04-30
Accepted:
2022-06-02
Online:
2023-07-28
Published:
2023-07-28
Contact:
FANG Sidun
E-mail:fangston@cqu.edu.cn
CLC Number:
JIANG Si, FANG Sidun. Review of Energy Efficiency Management for Logistic Center Microgrid Toward Dual-Carbon Goal[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 769-780.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.052
[1] | United Nation. Paris agreement[C]// Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change. Paris, France: United Nation, 2015: 1-7. |
[2] | 王庆一. 2019中国能源数据[M]. 北京: 绿色创新发展中心, 2019. |
WANG Qingyi. 2019 China energy statistics[M]. Beijing: IGDP, 2019. | |
[3] | 王海林, 何建坤. 交通部门CO2排放、能源消费和交通服务量达峰规律研究[J]. 中国人口·资源与环境, 2018, 28 (2): 59-65. |
WANG Hailin, HE Jiankun. Peaking rule of CO2 emissions, energy consumption and transport volume in transportation sector[J]. China Population, Resources and Environment, 2018, 28 (2): 59-65. | |
[4] | 李苑君, 吴旗韬, 吴康敏, 等. “流空间”视角的电子商务快递物流网络结构研究--以珠三角城市群为例[J]. 地域研究与开发, 2021: 40(2): 20-26. |
LI Yuanjun, WU Qitao, WU Kangmin, et al. Structure of E-commerce express logistics network from the perspective of flow space: Take the Pearl River Delta urban agglomeration as example[J]. Areal Research and Development, 2021: 40(2): 20-26. | |
[5] |
LEEK H. Drivers and barriers to energy efficiency management for sustainable development[J]. Sustainable Development, 2015, 23(1): 16-25.
doi: 10.1002/sd.1567 URL |
[6] |
WANG R, WANG Q, YAO S. Evaluation and difference analysis of regional energy efficiency in China under the carbon neutrality targets: Insights from DEA and Theil models[J]. Journal of Environmental Management, 2021, 293: 112958.
doi: 10.1016/j.jenvman.2021.112958 URL |
[7] | GRIFFITHS S, SOVACOOL B K. Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar City[J]. Energy Research & Social Science, 2020, 62: 101368. |
[8] | BAKHTIZIN R, EVTUSHENKO E, BURENINA I, et al. Methodical approach to design of system of the logistic centers and wholesale warehouses at the regional level[J]. Journal of Advanced Research in Law and Economics, 2016, 7(1): 15. |
[9] |
GAFUROV I, PANASYUK M, PUDOVIK E. Interregional logistic center as the growth point of regional economics[J]. Procedia Economics and Finance, 2014, 15: 474-480.
doi: 10.1016/S2212-5671(14)00486-9 URL |
[10] | WANG P. Vehicle Scheduling problem in terminals: A review[C]// International Conference on Verification and Evaluation of Computer and Communication Systems. Cham, UK: Springer, 2020: 54-67. |
[11] |
LI J, QI W. Toward optimal operation of internet data center microgrid[J]. IEEE Transactions on Smart Grid, 2016, 9(2): 971-979.
doi: 10.1109/TSG.2016.2572402 URL |
[12] |
CHOOBINEH M, MOHAGHEGHI S. A multi-objective optimization framework for energy and asset management in an industrial microgrid[J]. Journal of Cleaner Production, 2016, 139: 1326-1338.
doi: 10.1016/j.jclepro.2016.08.138 URL |
[13] |
LAGRANGE A, DE SIMÓN-MARTÍN M, GONZÁLEZ-MARTÍNEZ A, et al. Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: An application to a hospital[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105865.
doi: 10.1016/j.ijepes.2020.105865 URL |
[14] |
FANG S, WANG Y, GOU B, et al. Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1): 207-219.
doi: 10.1109/TVT.25 URL |
[15] |
YANG L, CAI Y, ZHONG X, et al. A carbon emission evaluation for an integrated logistics system-A case study of the port of Shenzhen[J]. Sustainability, 2017, 9(3): 462.
doi: 10.3390/su9030462 URL |
[16] |
HUANG X, GE J. Electric vehicle development in Beijing: An analysis of consumer purchase intention[J]. Journal of Cleaner Production, 2019, 216: 361-372.
doi: 10.1016/j.jclepro.2019.01.231 URL |
[17] | 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. |
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of CSEE, 2018, 38(7): 1893-1904. | |
[18] | SPROUL E, TRINKO D A, ASHER Z D, et al. Electrification of class 8 trucking: Economic analysis of in-motion wireless power transfer compared to long-range batteries[C]// 2018 IEEE Transportation Electrification Conference and Expo. Metro Detroit, MI, USA: IEEE, 2018: 744-748. |
[19] |
PELLETIER S, JABALI O, LAPORTE G. 50th anniversary invited article goods distribution with electric vehicles: Review and research perspectives[J]. Transportation Science, 2016, 50(1): 3-22.
doi: 10.1287/trsc.2015.0646 URL |
[20] |
JUAN A A, MENDEZ C A, FAULIN J, et al. Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges[J]. Energies, 2016, 9(2): 86.
doi: 10.3390/en9020086 URL |
[21] |
MUSOLINO G, RINDONE C, VITETTA A. Passengers and freight mobility with electric vehicles: A methodology to plan green transport and logistic services near port areas[J]. Transportation Research Procedia, 2019, 37: 393-400.
doi: 10.1016/j.trpro.2018.12.208 URL |
[22] |
DE MELLO BANDEIRA R A, GOES G V, GONÇALVES D N S, et al. Electric vehicles in the last mile of urban freight transportation: A sustainability assessment of postal deliveries in Rio de Janeiro-Brazil[J]. Transportation Research Part D: Transport and Environment, 2019, 67: 491-502.
doi: 10.1016/j.trd.2018.12.017 URL |
[23] |
NAPOLI G, MICARI S, DISPENZA G, et al. Freight distribution with electric vehicles: A case study in Sicily. RES, infrastructures and vehicle routing[J]. Transportation Engineering, 2021, 3: 100047.
doi: 10.1016/j.treng.2021.100047 URL |
[24] | FLORIAN K, MARTIN B, BÜLENT C, et al. Current status of the electrification of transport logistic vehicles - Early niche markets and commercialization opportunities[C]// European Battery, Hybrid and Fuel Cell Electric Vehicle Congress. März Genf, Swiss: Institute of Vehicle Concepts, 2017: 14-16. |
[25] |
SCHMIDT J, EISEL M, KOLBE L M. Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems[J]. Energy Policy, 2014, 74: 179-189.
doi: 10.1016/j.enpol.2014.08.008 URL |
[26] |
CHEN M, ZHU D. A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 11(4): 483-493.
doi: 10.1109/TCDS URL |
[27] |
BAI X, YAN W, CAO M. Clustering-based algorithms for multivehicle task assignment in a time-invariant drift field[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2166-2173.
doi: 10.1109/LRA.2017.2722541 URL |
[28] |
ZHANG J, HUANG X, YU R. Optimal task assignment with delay constraint for parked vehicle assisted edge computing: A Stackelberg game approach[J]. IEEE Communications Letters, 2019, 24(3): 598-602.
doi: 10.1109/COML.4234 URL |
[29] |
SONG M, LI J, HAN Y, et al. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics[J]. Applied Soft Computing, 2020, 95: 106561.
doi: 10.1016/j.asoc.2020.106561 URL |
[30] | 郭放, 黄宏军, 杨珺. 考虑顾客取货半径的电动汽车路径优化与服务策略研究[J]. 管理工程学报, 2020, 34(1): 154-163. |
GUO Fang, HUANG Hongjun, YANG Jun. Study on the electric vehicle routing optimization and service strategy with the consideration of customer self-pickup radius[J]. Journal of Industrial Engineering and Engineering Management, 2020, 34(1): 154-163. | |
[31] | 揭婉晨, 侍颖, 杨超. 需求可拆分电动汽车车辆路径问题及其改进分支定价算法研究[J]. 管理学报, 2020, 17(12): 1873-1880. |
JIE Wancheng, SHI Ying, YANG Chao. Split delivery routing problem of electric vehicles and its modified branch-and-price algorithm[J]. Chinese Journal of Management, 2020, 17(12): 1873-1880. | |
[32] | WEI S, WANG L, WANG B, et al. Improvement of A-star algorithm and its application in AGV path planning[J]. Automatic Instrument, 2017, 38: 51-54. |
[33] |
CHUANG J, AHUJA N. An analytically tractable potential field model of free space and its application in obstacle avoidance[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1998, 28(5): 729-736.
doi: 10.1109/3477.718522 URL |
[34] | QIAN C, QI Z, LI H. Improved artificial potential field method for dynamic target path planning in LBS[C]// 2018 Chinese Control and Decision Conference. Beijing, China: IEEE, 2018: 2710-2714. |
[35] | YU J, SUN Y, RUAN X, et al. Research on path planning for robots based on PSO optimization for fuzzy controller[C]// Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014: 5293-5298. |
[36] |
SALAVATI-KHOSHGHALB M, GENDREAU M, JABALI O, et al. A rule-based recourse for the vehicle routing problem with stochastic demands[J]. Transportation Science, 2019, 53(5): 1334-1353.
doi: 10.1287/trsc.2018.0876 URL |
[37] |
WANG Y, INFIELD D. Markov chain Monte-Carlo simulation of electric vehicle use for network integration studies[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 85-94.
doi: 10.1016/j.ijepes.2018.01.008 URL |
[38] |
LATIFI M, KHALILI A, RASTEGARNIA A, et al. A Bayesian real-time electric vehicle charging strategy for mitigating renewable energy fluctuations[J]. IEEE Transactions on Industrial Informatics, 2018, 15(5): 2555-2568.
doi: 10.1109/TII.9424 URL |
[39] |
ZHU J, YANG Z, MOURSHED M, et al. Electric vehicle charging load forecasting: A comparative study of deep learning approaches[J]. Energies, 2019, 12(14): 2692.
doi: 10.3390/en12142692 URL |
[40] |
DE CAUWER C, VERBEKE W, VAN MIERLO J, et al. A model for range estimation and energy-efficient routing of electric vehicles in real-world conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2787-2800.
doi: 10.1109/TITS.6979 URL |
[41] |
YANG H, YANG S, XU Y, et al. Electric vehicle route optimization considering time-of-use electricity price by learnable partheno-genetic algorithm[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 657-666.
doi: 10.1109/TSG.2014.2382684 URL |
[42] |
VANGA R, VENKATESWARAN J. Fleet sizing of reusable articles under uncertain demand and turnaround times[J]. European Journal of Operational Research, 2020, 285(2): 566-582.
doi: 10.1016/j.ejor.2020.02.004 URL |
[43] |
NIU H, ZHOU X, TIAN X. Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting lagrangian decomposition approach for solution symmetry breaking[J]. Transportation Research Part B: Methodological, 2018, 107: 70-101.
doi: 10.1016/j.trb.2017.11.003 URL |
[44] | KLEINER F, BEERMANN M, BEERS E, et al. Electrification of transport logistic vehicles (eLogV): HEV TCP Task 27[DB/OL]. (2017-05-04) [2022-04-30]. https://pureportal.coventry.ac.uk/en/publications/electrification-of-transport-logistic-vehicles-elogv-hev-tcp-task. |
[45] | The Business Times. Jurong Port starts world’s largest port-based solar facility[DB/OL]. (2021-03-02)[2022-04-30]. https://www.businesstimes.com.sg/energy-commodities/jurong-port-starts-worlds-largest-port-based-solar-facility. |
[46] |
CASCAJO R, GARCAET E. Integration of marine wave energy converters into seaports: A case study in the Port of Valencia[J]. Energies, 2019, 12(5): 787.
doi: 10.3390/en12050787 URL |
[47] | HAFEN H. Energy cooperation port of Hamburg[DB/OL]. (2015-02-08)[2022-04-30]. https://hpa-staging.neusta-is.de/fileadmin/user_upload/broschuere_smartportenergy_web.pdf. |
[48] |
HE D, PANG Y, LODEWIJKS G. Green operations of belt conveyors by means of speed control[J]. Applied Energy, 2017, 188: 330-341.
doi: 10.1016/j.apenergy.2016.12.017 URL |
[49] | DIN. Continuous conveyors-belt conveyors for loos bulk materials-basics for calculation and dimensioning: Standard DIN 22101[S]. Germany: German Institute for Standardization, 2002. |
[50] |
ZHANG S, XIA X. Optimal control of operation efficiency of belt conveyor systems[J]. Applied Energy, 2010, 87(6): 1929-1937.
doi: 10.1016/j.apenergy.2010.01.006 URL |
[51] |
ZHANG S, XIA X. Modeling and energy efficiency optimization of belt conveyors[J]. Applied Energy, 2011, 88(9): 3061-3071.
doi: 10.1016/j.apenergy.2011.03.015 URL |
[52] |
MU Y, YAO T, JIA H, et al. Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage[J]. Applied Energy, 2020, 275: 115368.
doi: 10.1016/j.apenergy.2020.115368 URL |
[53] |
GENNITSARIS S G, KANELLOS F D. Emission-aware and cost-effective distributed demand response system for extensively electrified large ports[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4341-4351.
doi: 10.1109/TPWRS.59 URL |
[54] |
DUIN V, GEERLINGS H, VERBRAECK A, et al. Cooling down: A simulation approach to reduce energy peaks of reefers at terminals[J]. Journal of Cleaner Production, 2018, 193: 72-86.
doi: 10.1016/j.jclepro.2018.04.258 URL |
[55] |
HU X, ZHANG H, CHEN D, et al. Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy, 2020, 197: 117155.
doi: 10.1016/j.energy.2020.117155 URL |
[56] |
GREAVES S, BACKMAN H, ELLISON A B. An empirical assessment of the feasibility of battery electric vehicles for day-to-day driving[J]. Transportation Research Part A: Policy and Practice, 2014, 66: 226-237.
doi: 10.1016/j.tra.2014.05.011 URL |
[57] |
WANG H, ZHAO D, MENG Q, et al. A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore[J]. Transportation Research Part A: Policy and Practice, 2019, 119: 224-237.
doi: 10.1016/j.tra.2018.11.012 URL |
[58] | MEHTA R, SRINIVASAN D, TRIVEDI A. Optimal charging scheduling of plug-in electric vehicles for maximizing penetration within a workplace car park[C]// 2016 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2016: 3646-3653. |
[59] |
STRBAC G. Demand side management: Benefits and challenges[J]. Energy policy, 2008, 36(12): 4419-4426.
doi: 10.1016/j.enpol.2008.09.030 URL |
[60] |
PALENSKY P, DIETRICH D. Demand side management: Demand response, intelligent energy systems, and smart loads[J]. IEEE Transactions on Industrial Informatics, 2011, 7(3): 381-388.
doi: 10.1109/TII.2011.2158841 URL |
[61] |
NOOR S, YANG W, GUO M, et al. Energy demand side management within micro-grid networks enhanced by blockchain[J]. Applied Energy, 2018, 228: 1385-1398.
doi: 10.1016/j.apenergy.2018.07.012 URL |
[62] |
GROPPI D, PFEIFER A, GARCIA D A, et al. A review on energy storage and demand side management solutions in smart energy islands[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110183.
doi: 10.1016/j.rser.2020.110183 URL |
[63] |
BINTI AHAMAD N B, SU C L, XIA Z, et al. Energy harvesting from harbor cranes with flywheel energy storage systems[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3354-3364.
doi: 10.1109/TIA.28 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||